Skip to main content
Log in

Positive semidefinite relaxations for distance geometry problems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider distance geometry problems for determiningr-dimensional coordinates ofn points from a given set of the distances between the points. This problem is a fundamental problem in molecular biology for finding the structure of proteins from NMR (Nuclear Magnetic Resonance) data.

We formulate the problem as the minimization of an error function defined by the sum of the absolute differences, which is a typical nonconvex optimization problem. We show that this problem can be reduced into a concave quadratic minimization problem. We propose positive semidefinite relaxations as well as local search procedures for this problem. Our numerical results show that we can generate acceptable solutions of the problem with up to 800 points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alfakih, A. Khandani and H. Wolkowicz, Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl.,12 (1998), 13–30.

    Article  MathSciNet  Google Scholar 

  2. S. Benson, Y. Ye and X. Zhang, Mixed linear and semidefinite programming for combinatorial and quadratic optimization. Optim. Meth. Software,11 &12 (1999), 515–544.

    Article  MathSciNet  Google Scholar 

  3. I. Borg and P. Groenen, Modern Multidimensional Scaling. Springer Series in Statistics, Springer-Verlag, New York, 1997.

    Google Scholar 

  4. M. Browne, The young-householder algorithm and the least square multidimensional scaling of square distance. J. Classification,4 (1987), 175–190.

    Article  MathSciNet  Google Scholar 

  5. A.T. Brunger and M. Nilges, Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. Quart. Rev. Biophys.,26 (1993), 49–125.

    Article  Google Scholar 

  6. G.M. Crippen and T.F. Havel, Distance Geometry and Molecular Conformation. John Wiley & Sons, New York, 1988.

    MATH  Google Scholar 

  7. J. De Leeuw, Convergence of the majorization method for multidimensional scaling. J. Classification,5 (1988), 163–180.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Fujisawa, M. Kojima and K. Nakata, Sdpa (semi-definite programming algorithm) — user’s manual version 4.10. Dept. of Math. and Comp. Sci. B-308, Tokyo Institute of Technology, 1995.

  9. N. Gaffke and R. Mathar, A cyclic projection algorithm via duality. Metrika,36 (1989), 29–54.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Glunt, T.L. Hayden and M. Raydan, Molecular conformations from distance matrices. J. Comput. Chem.,14 (1993), 114–120.

    Article  Google Scholar 

  11. W. Glunt, T.L. Hayden and L. Wei-Min, The embedding problem for predistance matrices. Bull. Math. Biol.,53 (1991), 769–796.

    MATH  Google Scholar 

  12. T.F. Havel, An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Progr. Biophys. Mole. Biol.,56 (1991), 43–78.

    Article  Google Scholar 

  13. W.J. Heiser, Convergent computation by iterative majorization. Recent Advances in Descriptive Multivariate Analysis, Royal Statistical Society Lecture Notes Series2, Oxford University Press, New York, 1995, 157–189.

    Google Scholar 

  14. B. Hendrickson, Exploiting structure in global optimization. SIAM J. Optim.,5 (1995), 835–857.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim.,7 (1997), 86–125.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika,29 (1964), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.B. Kruskal, Nonmetric multidimensional scaling: A numerical method. Psychometrika,29 (1964), 115–129.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.J. Moré and Z. Wu, Global continuation for distance geometry problems. SIAM J. Optim.,7 (1997), 814–836.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.J. Moré and Z. Wu, Distance geometry optimization for protein structures. J. Global Optim.,15 (1999), 297–312.

    Article  Google Scholar 

  20. Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming. SIAM Studies in Applied Mathematics13, SIAM, Philadelphia, 1994.

    Google Scholar 

  21. P.M. Pardalos and X. Liu, A tabu based pattern search method for the distance geometry problem. New Trends in Mathematical Programming (eds. F. Giannessi, S. Komlósi and T. Rapcsák), Kluwer Academic Publishers, Boston, 1998, 223–234.

    Google Scholar 

  22. J.B. Saxe, Embeddability of weighted graphs in κ-space is strongly NP-hard. Proc. of 17th Allerton Conference in Communications, Control and Computing, Monticello, IL, 1979, 480–489.

  23. Y. Takane, F.W. Young and J. De Leeuw, Nonmetric individual differences multidimensional scaling. Psychometrika,42 (1977), 7–67.

    Article  MATH  Google Scholar 

  24. Y. Ye, Interior Point Algorithms: Theory and Analysis. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, New York, 1997.

    Google Scholar 

  25. Z. Zou, R.H. Bird and R.B. Schnabel, A stochastic/perturbation global optimization algorithm for distance geometry problems. J. Global Optim.,11 (1997), 91–105.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutoshi Yajima.

Additional information

This research was partly supported by Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture, Grant No. 13650063.

About this article

Cite this article

Yajima, Y. Positive semidefinite relaxations for distance geometry problems. Japan J. Indust. Appl. Math. 19, 87–112 (2002). https://doi.org/10.1007/BF03167449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167449

Key words

Navigation