Skip to main content
Log in

Diffusion and aggregation of Alzheimer’s Aβ1–40 peptide in aqueous trifluoroethanol solutions as studied by pulsed field gradient NMR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Pulsed field gradient nuclear magnetic resonance technique was applied to measure the self-diffusion coefficient of Aβ1–40 peptide in trifluoroethanol (TFE) and mixed solvent TFE-water (D2O) buffer (pD 7.8) at 293 K. The data were analyzed on the basis of the Stokes model and the hardsphere approach was used to estimate self-diffusion coefficients. It was found that the extent of the Aβ1–40 aggregation in TFE solutions depends on the concentration of the peptide and the sample preparation protocol. After soft mixing, i.e., without any additional mechanical pretreatment of the peptide, the peptide is present in the monomeric form in TFE solutions. However, the additional water-bath sonication of the sample during the dissolution of Aβ1–40 in TFE enforces oligomerization of the peptide with the size of aggregates ranging from tetra- to hexamers. An increase of D2O in the mixed TFE-D2O solvent of up to 75% leads to the aggregation of the larger part of the peptide. However, the components of self-diffusion coefficients related to low-mass Aβ1–40 oligomers (dimers and trimers) were not observed in the diffusion decay curves. The most probable explanation is that dimers and trimers are not the principal intermediate species in the aggregation of Aβ1–40 peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K.: Proc. Natl. Acad. Sci. USA82, 4245–4249 (1985)

    Article  ADS  Google Scholar 

  2. Haass C., Selkoe D.J.: Cell75, 1039–1042 (1993)

    Article  Google Scholar 

  3. Iversen L.L., Mortishire-Smith R.J., Pollack S.J., Shearman M.S.: Biochem. J.311, 1–16 (1995)

    Google Scholar 

  4. Rochet J.-C., Lansbury Jr. P.T.: Curr. Opin. Struct. Biol.10, 60–68 (2000)

    Article  Google Scholar 

  5. Kosik K.S.: Proc. Natl. Acad. Sci. USA96, 2574–2576 (1999)

    Article  ADS  Google Scholar 

  6. Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., Taddei N., Ramponi G., Dobson C.M., Stefani M.: Nature416, 507–511 (2002)

    Article  ADS  Google Scholar 

  7. Lansbury P.T. Jr.: Proc. Natl. Acad. Sci. USA96, 3342–3344 (1999)

    Article  ADS  Google Scholar 

  8. Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C., Cotman C.W., Glabe C.: Science300, 486–489 (2003)

    Article  ADS  Google Scholar 

  9. Antzutkin O.N., Balbach J.J., Leapman R.D., Rizzo N.W., Reed J., Tycko R.: Proc. Natl. Acad. Sci USA97, 13045–13050 (2000)

    Article  ADS  Google Scholar 

  10. Lorenzo A., Yuan M., Zhang Z., Paganetti P.A., Sturchler-Pierrat C., Staufenbiel M., Mautino J., Vigo F.S., Sommer B., Yankner B.A.: Nat. Neurosci.3, 460–464 (2000)

    Article  Google Scholar 

  11. Jarvet J., Damberg P., Bodell K., Eriksson L.E.G., Gräslund A.: J. Am. Chem. Soc.122, 4261–4268 (2000)

    Article  Google Scholar 

  12. Danielsson J., Jarvet J., Damberg P., Gräslund A.: Magn. Reson. Chem.40, S89-S97 (2002)

    Article  Google Scholar 

  13. Price W.S., Tsuchiya F., Arata Y.: J. Am. Chem. Soc.121, 11503–11512 (1999)

    Article  Google Scholar 

  14. Jones J.A., Wilkins D.K., Smith L.J., Dobson C.M.: J. Biomol. NMR10, 199–203 (1997)

    Article  Google Scholar 

  15. Wilkins D.K., Grimshaw S.B., Receveur V., Dobson C.M., Jones J.A., Smith L.J.: Biochemistry38, 16424–16431 (1999)

    Article  Google Scholar 

  16. Yao S., Howlett G.H., Norton R.S.: J. Biomol. NMR16, 109–119 (2000)

    Article  Google Scholar 

  17. Tseng B.P., Ester W.P., Clish C.B., Stimson E.R., Ghilardi J.R., Vinters H.V., Mantyh P.W., Lee J.P., Maggio J.E.: Biochemistry38, 1424–10431 (1999)

    Article  Google Scholar 

  18. Hou L., Shao H., Zhang Y., Li H., Menon N.K., Neuhaus E., Brewer J.M., Byeon I.-J.L., Ray D.G., Vitek M.P., Iwashita T., Makula R.A., Przybyla A.B., Zagorski M.: J. Am. Chem. Soc.126, 1992–2005 (2005)

    Article  Google Scholar 

  19. Narayanan S., Reif B.: Biochemistry44, 1444–1452 (2005)

    Article  Google Scholar 

  20. Krishnan V.V.: J. Magn. Reson.124, 468–473 (1997)

    Article  ADS  Google Scholar 

  21. Stejskal E.O., Tanner J.E.: J. Chem. Phys.42, 288 (1965)

    Article  ADS  Google Scholar 

  22. Shuck P., MacPhee C.E., Howlett G.J.: Biophys. J.74, 466–474 (1998)

    Article  ADS  Google Scholar 

  23. Fushman D. Varadan R., Assfalg M., Walker O.: Prog. Nucl Magn. Reson. Spectrosc.44, 189–214 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, A., Sulejmanova, A., Antzutkin, O. et al. Diffusion and aggregation of Alzheimer’s Aβ1–40 peptide in aqueous trifluoroethanol solutions as studied by pulsed field gradient NMR. Appl. Magn. Reson. 29, 439 (2005). https://doi.org/10.1007/BF03167174

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167174

Keywords

Navigation