Skip to main content
Log in

Thallium-201 reinjection images can identify the viable and necrotic myocardium similarly to metabolic imaging with glucose loading18F-fluorodeoxyglucose (18FDG)-PET

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

We compared the usefulness of18F-fluorodeoxyglucose (18FDG)-PET with glucose loading and thallium-201 (201Tl) reinjection imaging for determining the viability of the myocardium in 21 patients with an old anterior myocardial infarction. We obtained transaxial views during201T1 reinjection imaging performed 10 minutes after post-exercise injection of 37 MBq201Tl. PET imaging with 75 g oral glucose loading was performed 60 min after injection of 148 MBq of I8FDG. Wall motion was evaluated by echocardiography. Excellent18FDG-PET images were obtained in 19 of 21 subjects in whom plasma glucose levels were below 251 mg/d/. The results of201Tl reinjection imaging and18FDG-PET imaging were in agreement in 20 of the 21 subjects. Echocardiography demonstrated hypokinesis or akinesis in segments identified as abnormal in imaging studies. Our results showed that201Tl reinjection imaging identified the viable and necrotic myocardium similarly to metabolic imaging obtained by18FDG-PET with glucose loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braunwald E, Kloner RA. The stunned myocardium: Prolonged, postischemic ventricular dysfunction.Circulation 66: 1146–1149, 1982.

    CAS  PubMed  Google Scholar 

  2. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: Evidence for the “Hibernating myocardium.”J Am Coll Cardiol 8: 1467–1470, 1986.

    CAS  PubMed  Google Scholar 

  3. Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging.N Engl J Med 323: 141–146, 1990.

    CAS  PubMed  Google Scholar 

  4. Gibson RS, Watson DD, Taylor GJ, Crosby IK, Wellons HL, Holt ND, et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy.J Am Coll Cardiol 1: 804–815, 1983.

    Article  CAS  PubMed  Google Scholar 

  5. Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM, et al. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: does it represent scar or ischemia?Am Heart J 110: 996–1001, 1985.

    Article  CAS  PubMed  Google Scholar 

  6. Rocco TP, Dilsizian V, Mckusick A, Fischman AJ, Boucher CA, Strauss HW. Comparison of thallium redistribution with rest “reinjection” imaging for the detection of viable myocardium.Am J Cardiol 66: 158–163, 1990.

    Article  CAS  PubMed  Google Scholar 

  7. Ohtani H, Tamaki N, Yonekura Y, Mohiuddin IH, Hirata K, Ban T, et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary bypass grafting.Am J Cardiol 66: 394–399, 1990.

    Article  CAS  PubMed  Google Scholar 

  8. Bonow RO, Berman DS, Gibbons RJ, Johnson LL, Rumgerger JA, Schwaiger M, et al. Cardiac positron emission tomography.Circulation 84: 447–454, 1991.

    CAS  PubMed  Google Scholar 

  9. Tamaki N, Yonekura Y, Yamashita K, Senda M, Saji H, Hashimoto T, et al. Relation of left ventricular perfusion and wall motion with metabolic activity in persistant defects on thallium-201 tomography in healed myocardium infarction.Am J Cardiol 62: 202–208, 1988.

    Article  CAS  PubMed  Google Scholar 

  10. Tamaki N, Yonekura Y, Yamashita K, Mukai T, Magata Y, Hashimoto T, et al. SPECT thallium-201 tomography and positron tomograpy using N-13 ammonia and F-18 fluorodeoxyglucose in coronary artery disease.Am J Cardiac Imaging 3: 3–9, 1989.

    Google Scholar 

  11. Gropler RJ, Sigel BA, Lee KJ, Moerlein SM, Perry DJ, Bergmann SR, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans.J Nucl Med 31: 1749–1756, 1990.

    CAS  PubMed  Google Scholar 

  12. Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography.J Nucl Med 32: 565–578, 1991.

    CAS  PubMed  Google Scholar 

  13. Judkins MP. Selective coronary angiography—a percutaneous transfemoral technic.Radiol 89: 815–824, 1967

    CAS  Google Scholar 

  14. Melvin P, Judkins MP. Percutaneous transfemoral coronary arteriography.Radiol Clin North Am 6: 467–492, 1968.

    Google Scholar 

  15. Dilsizian V, Bonow RD. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium.Circulation 87: 1–20, 1993.

    CAS  PubMed  Google Scholar 

  16. Budinger TF, Pohost GM. Thallium ‘redistribution’: An explanation.J Nucl Med 27: 996, 1986 (abstract).

    Google Scholar 

  17. Camici P, Ferranini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imagingby positron emission tomography.Prog Cardiovasc Dis 32: 217–238, 1989.

    Article  CAS  PubMed  Google Scholar 

  18. Fudo T, Kambara H, Hashimoto T, Hayashi M, Nohara R, Tamaki N, et al. F-18 deoxyglucose and stress N-13 ammonia positron emission tomography in anterior wall healed myocardial infarction.Am J Cardiol 60: 1191–1197, 1988.

    Article  Google Scholar 

  19. Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, et al. Identification and differentiation of myocardial ischemia and infarction in man with positron computed tomography, F-18-labeled fluorodeoxyglucose and N-13 ammonia.Circulation 67: 766–788, 1983.

    CAS  PubMed  Google Scholar 

  20. Berry JJ, Schwaiger M. Metabolic imaging with positron emission tomography.Current Opinion in Cardiology 5: 803–812, 1990.

    Article  CAS  PubMed  Google Scholar 

  21. Knuuti MJ, Nuutila P, Ruotsalainen U, Saraste M, Harkonen R, Ahonen A, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography.J Nucl Med 33: 1255–1262, 1992.

    CAS  PubMed  Google Scholar 

  22. Tamaki N, Ohtani H, Yamashita K, Magata Y, Yonekura Y, Nohara R, et al. Metabolic activity in the area of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose.J Nucl Med 32: 673–678, 1991.

    CAS  PubMed  Google Scholar 

  23. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction.Circulation 83: 26–37, 1991.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogiu, N., Nakai, K. & Hiramori, K. Thallium-201 reinjection images can identify the viable and necrotic myocardium similarly to metabolic imaging with glucose loading18F-fluorodeoxyglucose (18FDG)-PET. Ann Nucl Med 8, 171–176 (1994). https://doi.org/10.1007/BF03164993

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164993

Key words

Navigation