Skip to main content
Log in

Formation of correlated spin systems in one- and two-dimensional copper and lanthanide compounds

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) of the systems of exchange-coupled ions differing strongly by spin-lattice relaxation times are discussed. The physical description of a rapid process which modulates and averages out the other, more slow one, is extended to the situations when paramagnetic ions participate in several exchange processes. The layered copper-neodymium squarate, [CuNd2(C4O4)4H2O16] · 2H2O (I), and the one-dimensional copper-lanthanide Cl3-acetates, CuLn2× (Cl3CCOO)8 · 6H2O (Ln = Nd3+ (II), Pr3+ (III)), were investigated by X-band EPR in the temperature range 4.2–300 K. These compounds were shown to consist of subunits admitting exchange interaction between Cu ions, Cu-Nd ions and Nd-Nd ions. At high temperatures the short spin-lattice relaxation time of Nd3+ averages out the Cu-Nd exchange interaction. The manifestation of this interaction should be temperature dependent when governed by the spin-lattice relaxation of one of the partners. The collective Cu spin-system exists in I atT > 250 K (J Cu-Cu≈ 0.1 cm−1) and gradually transforms into Cu-Nd spin-system which dominates atT < 20–30 K (J Cu-Nd ≈ 0.4 cm−1) withJ Cu-Nd >J Cu-Cu >J Nd-Nd Polymer chains in II may be considered as weakly interacting asymmetrical triads −Nd1−Cu-Nd2 (with the largest components ofJ ij tensor ≈ 0.3 cm−1). For III the lowest state of Pr3+ was proved to be a nonmagnetic singlet withJ Cu-Pr equal to zero. Very weak, temperature-dependent exchange interaction between Cu2+ ions via two Pr3+ ions (J Cu-Cu ≈ 0.015 cm−1 atT = 4.2 K) was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benelli C., Caneschi A., Gatteschi D., Pardi L.: Magnetic Molecular Materials (Gatteschi D., Kahn O., Miller J., Palaccio F., eds.), NATO-ASI Series E198, pp. 233–244. Dordrecht: Kluwer Academic Publ. 1991.

    Google Scholar 

  2. Guillow O., Kahn O., Oushoorn R.L.: Inorg. Chim. Acta198-200, 119–131 (1992)

    Article  Google Scholar 

  3. Bouayad A., Brouca-Cabarrecq Ch., Trombe J.-C.: Inorg. Chim. Acta195, 193–201 (1992)

    Article  Google Scholar 

  4. Kutlu I., Mayer G., Oczko G., Legendziewicz J.: Eur. J. Solid State Inorg. Chem.34, 231–239 (1997)

    Google Scholar 

  5. Oczko G., Legendziewicz J., Mrozinski J., Meyer G.: J. Alloys Comp.277-275, 219–224 (1998)

    Article  Google Scholar 

  6. Voronkova V.K., Huskowska E., Legendziewicz J., Yablokov Yu.V.: Solid State Phys. Russ.39, 2057–2061 (1997)

    Google Scholar 

  7. Voronkova V.K., Yablokov Yu.V., Legendziewicz J., Oczko G., Borzechowska M.: Abstracts of the XIth Winter School on Coordination Chemistry, Karpacz, Poland, 7–11 December 1998, (Moroziński J., ed.), pp. 26–27. Wroclaw: University of Wroclaw 1998.

    Google Scholar 

  8. Voronkova V.K., Yablokov Yu.V., Legendziewicz J., Oczko G., Borzechowska M.: Solid State Phys. Russ.41, 2154–2157 (1999)

    Google Scholar 

  9. Bleaney B., Elliot R.J., Scovil H.E.D.: Proc. Phys. Soc. A64, 933 (1951)

    Article  ADS  Google Scholar 

  10. Sarasvat R.S., Upreti G.C.: J. Phys. Soc. Jpn.44, 1142 (1978)

    Article  ADS  Google Scholar 

  11. Salikhov K.M., Galeev R.T., Voronkova V.K., Yablokov Yu.V., Legendziewicz J.: Appl. Magn. Reson.14, 457–472 (1998)

    Article  Google Scholar 

  12. Pryce M.H.L.: Nature162, 539 (1948)

    Article  ADS  Google Scholar 

  13. Anderson P.W., Weiss P.R.: Rev. Mod. Phys.25, 269 (1953)

    Article  ADS  Google Scholar 

  14. Bagguley D.M.S., Griffiths J.H.E.: Nature162, 538 (1948)

    Article  ADS  Google Scholar 

  15. Hoffmann S.K., Hilczer W., Goslar J.: Appl. Magn. Reson.7, 289–321 (1994)

    Article  Google Scholar 

  16. Salikhov K.M.: J. Magn. Reson.63, 271–279 (1985)

    Google Scholar 

  17. Yablokov Yu.V., Gaponenko V.A., Eremin M.V., Zelentsov V.V., Zemchuzhnikova T.A.: Sov. Phys. JETP38, 988–990 (1974)

    ADS  Google Scholar 

  18. Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon Press 1970.

    Google Scholar 

  19. Panagiotopolous A., Zafiropoulos Th.F., Perleres S.P., Bakalbasis E., Masson-Ramade I., Kahn O., Terzis A., Raptopoulou C.P.: Inorg. Chem.34, 4918–4920 (1995)

    Article  Google Scholar 

  20. Baker J.M., Hutchison C.A., Jebkins A.A., Tronconi A.L.: Proc. R. Soc. London A453, 417–429 (1997)

    Article  ADS  Google Scholar 

  21. Yablokov Yu.V., Voronkova V.K., Mosina L.V.: Paramagnitnyi Rezonans Obmennykh Klasterov. Moscow: Nauka 1988.

    Google Scholar 

  22. Plumlee K.W., Hoffman B.M., Ibers J.A.: J. Chem. Phys.63, 1926–1942 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yablokov, Y.V., Voronkova, V.K., Legendziewicz, J. et al. Formation of correlated spin systems in one- and two-dimensional copper and lanthanide compounds. Appl. Magn. Reson. 18, 165–176 (2000). https://doi.org/10.1007/BF03162108

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162108

Keywords

Navigation