Skip to main content
Log in

In vivo incorporation ofN-acetyl-d-[U-14C]mannosamine into brain gangliosides of rats with quinolinic acid-induced lesions of the forebrain nucleus basalis magnocellularis

  • Published:
Molecular and Chemical Neuropathology

Abstract

Quinolinic acid, an excitotoxic agent, was applied unilaterally to the nucleus basalis magnocellularis of the rat forebrain, which resulted in neuronal destructions and consequently, loss of cholinergic projections to the cortex. The effects on ganglioside metabolism in brain cortical matter were studied. Total ganglioside contents in lesioned brains (n=8) were found to be significantly decreased (range, 20–60%) but changes in brain ganglioside patterns on thin layer chromatograms were not apparent. On the other hand, in vivo incorporation ofN-acetyl-d-[U-14C]mannosamine into brain gangliosides ranged from 19 to 36% (mean, 26%) of radiolabel in controls, and 5 to 21% (mean, 13%), a significant reduction in lesioned brains. Labeling of brain glycoproteins or of nonganglioside lipids was not affected. Since central cholinergic hypofunctions are also important neurochemical characteristics of Alzheimer’s disease, abnormal ganglioside metabolism found in the lesioned rats may be of significance in the human disorder, where reduced brain ganglioside contents have also been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caputto B. L., Noves G. A., Cemborain B. N., and Caputto R. (1982) The effect of light exposure following an intraocular injection ofN-[3H]-acetylmannosamine on the labeling of gangliosides and glycoproteins.Brain Res. 245, 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T., Price D. L., and Delong M. R. (1983) Alzheimer’s disease: A disorder of cortical cholinergic innervation.Science 219, 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Cuello A. C., Stephens P. H., Tagari P. C., Sofroniew M. V., and Pearson R. C. (1986) Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1.Brain Res. 376, 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Derrington E. A., Masco D., Whittaker V. P. (1989) Confirmation of the cholinergic specificity of the chol-1 gangliosides in mammalian brain using affinity-purified antisera and lesions affecting the cholinergic input to the hippocampus.J. Neurochem. 53, 1686–1692.

    Article  PubMed  CAS  Google Scholar 

  • El-Defrawi S. R., Coloma F., Jhamandas K., Boegman R. J., Beninger R. J., and Wirsching B. A. (1985) Functional and neurochemical cortical cholinergic impairment following neurotoxic lesions of the nucleus basalis magnocellularis in the rat.Neurobiol. Aging 6, 325–330.

    Article  Google Scholar 

  • Favaron M., Manev H., Alho H., Bertolini M., Ferret B., Guidotti A., and Costa E. (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex.Proc. Natl. Acad. Sci. 85, 7351–7355.

    Article  PubMed  CAS  Google Scholar 

  • Ferretti P. and Borroni E. (1986) Putative cholinergic-specific gangliosides in guinea-pig forebrain.J. Neurochem. 46, 1888–1894.

    Article  PubMed  CAS  Google Scholar 

  • Folch J., Lees M., and Sloane Stanley G. H. (1957) A simple method for the isolation and purification of total lipidis from animal tissue.J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  • Johnston M. V., McKinney M., and Coyle J. T. (1979) Evidence for a cholinergic projection to the neocortex from neurons in the basal forebrain.Proc. Natl. Acad. Sci. 76, 5392–5396.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson G., Gorio A., Hallman H., Janigro F., Kojima H., Luthman J., and Zanoni R (1984). Effects of GM1 ganglioside in developing and mature serotonin and noradrenalin neurons lesioned by selective neurotoxins.J. Neurosci. Res. 12, 459–475.

    Article  PubMed  CAS  Google Scholar 

  • Ledeen R. W., Haley J. E., and Srivanek J. A. (1981) Study of ganglioside patterns with two-dimensional thin-layer chromatography and radioautography; Detection of new futogangliosides and other minor species in rabbit brain.Anal. Biochem. 112, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Ledeen R. W. and Yu R. K. (1982) Ganglioside structure isolation and analysis, inMethods in Enzymology (Ginsburg V., ed.)83, Academic, New York, pp. 139–191.

    Google Scholar 

  • Lehman J., Nagy J. I., Atmodja S., and Fibiger H. C. (1980) The nucleus basalis magnocellularis: the origin of cholinergic projection to the neocortex of rat.Neuroscience 5, 1161–1174.

    Article  Google Scholar 

  • Miettinen T. and Takki-Luukkainen C. T. (1959) Use of butylacetate in the determination of sialic acid.Acta Chem. Scand. 13, 856–858.

    Article  CAS  Google Scholar 

  • Ng Ying Kin N. M. K., Pan L. H., and Louvaris J. H., Robitaille Y., and Nair N. P. V. (1989) Brain gangliosides in Alzheimer’s disease and in rats with forebrain lesions.Soc. NeuroSci. Abs. 15(1), 859.

    Google Scholar 

  • Pedata F., Giovanelli L., and Pepeu G. (1984) GM1 ganglioside facilitates the recovery of high-affinity choline uptake in the cerebral cortex of rats with a lesion of the nucleus basalis magnocellularis.J. Neurosci. Res. 12, 421–427.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R., Whetsell W. O., and Mangano R. M. (1983) Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain.Science 219, 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Sorbi S., Piacentini S., and Amaducci L. (1987) Intralaminar distribution of neurotransmitter-related enzymes in cerebral cortex of Alzheimer’s disease.Gerontology 33, 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L. (1957) Quantitative estimation of sialic acids.Biochim. Biophys. Acta 24, 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Toffano G., Savoini G., Mroni F., Lombardi G., Calza L., and Agnati L. F. (1983) GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system.Brain Res. 261, 163–166.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng Ying Kin, N.M.K., Chung, D. In vivo incorporation ofN-acetyl-d-[U-14C]mannosamine into brain gangliosides of rats with quinolinic acid-induced lesions of the forebrain nucleus basalis magnocellularis. Molecular and Chemical Neuropathology 13, 233–241 (1990). https://doi.org/10.1007/BF03159926

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159926

Index Entries

Navigation