Skip to main content
Log in

Macrofauna succession in an infilling salt marsh clay pit

  • Published:
Senckenbergiana maritima Aims and scope Submit manuscript

Abstract

The high demand of clay as soil material for dikes leads to the problem of clay excavation in salt marshes, which is a major disturbance for salt marsh ecosystems. Clay was excavated from the salt marsh Petersgroden (western Jade Bay, Germany) in 1998/99. The 10 ha dredging hole (clay pit) was connected with the tidal flat system to infill and recover more naturally, with creeks as natural structures. The succession of benthic macrofauna was studied in comparison with the adjacent tidal flats (mud flat) at three stations at both sites directly after the excavation and during the following eight years (2000 to 2007).

This long-term study revealed directional changes of macrofauna communities within the clay pit. The comparison to the adjacent mud flat enabled the differentation between the successional steps and the general high variability of intertidal habitats. Overall, during the first eight years of infilling the clay pit macrofauna resembled similar species and population dynamics as the macrofauna on the mud flat, but abundances and dominant species differed in space and time. Polychaetes and oligochaetes dominated both sites.

As hypothesized, differences between macrofauna communities in the clay pit and on the mud flat resulted from successional processes within the clay pit. While the mud flat community remained rather similar, the clay pit community changed from 2000 to 2007. The results give evidence for directional succession in three phases. During the first three years (2000 to 2002), the clay pit community became more similar to the mud flat. We observed early successional stages: marine early pioneers (e.g. oligochaeteParanais litoralis) recolonized the clay pit fastest and marine mud flat species with lower recolonization potential (polychaeteManayunkia aestuarina, ostracodCyprideis torosa) followed. During a second phase (2003 and 2004), clay pit and mud flat communities were almost identical, the clay pit macrofauna shared early successional properties with the mud flat macrofauna. The early pioneer speciesP. litoralis became scarce. In a third phase (2005 to 2007), intermediate stages of succession were observed: the clay pit macrofauna started to change from a mud flat towards a salt marsh community. Major indications were the general decrease of total abundance, the loss of marine species (C. torosa and polychaeteH. filiformis), and the increase in abundance of terrestrial enchytraeid oligochates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, T.J., Jensen, K.T., Lund-Hansen, L., Mouritsen, K.N. &Pejerup, M. (2002): Enhanced erodibility of fine-grained marine sediments byHydrobia ulvae. — Journal of Sea Research,48: 51–58.

    Article  Google Scholar 

  • Arens, S. &Albrecht, A. (2002): Entwicklung und ökologische Wertigkeit von Kleientnahmen in Salzwiesen — Geomorphologie, Sedimenthaushalt und bodenkundliche Parameter. — Dienstbericht Forschungsstelle Küste 13/2002, 48 pp.; Norderney/Wilhelmshaven (Niedersächsisches Landesamt für Ökologie).

    Google Scholar 

  • Arens, S. &Götting, E. (2002): Entwicklung und ökologische Wertigkeit von Kleientnahmen in Salzwiesen — Synthese der Untersuchungsergebnisse. — Dienstbericht Forschungsstelle Küste 18/2002, 26 pp.; Norderney/Wilhelmshaven (Niedersächsisches Landesamt für Ökologie).

    Google Scholar 

  • Armonies, W., Herre, E. &Sturm, M. (2001): Effects of the severe winter 1995/96 on the benthic macrofauna of the Wadden Sea and the coastal North Sea near the island Sylt. — Helgoland Marine Research,55: 170–175.

    Article  Google Scholar 

  • Bartels-Hardege, H.D. &Zeeck, E. (1990): Reproductive behavior ofNereis diversicolor (Annelida: Polychaeta). — Marine Biology,106: 409–412.

    Article  Google Scholar 

  • Bell, S.S. (1982): On the population biology and meiofaunal characteristics ofManayunkia aestuarina (Polychaeta: Sabellidae: Fabricinae) from a South Carolina salt marsh. — Estuarine, Coastal and Shelf Science,14: 215–221.

    Article  Google Scholar 

  • Beukema, J.J. (1992): Expected changes in the Wadden Sea benthos in a warmer world: lessons from periods with mild winters. — Netherlands Journal of Sea Research,30: 73–79.

    Article  Google Scholar 

  • Bick, A. (1996): Reproduction and larval development ofManayunkia aestuarina (Bourne, 1883) (Polychaeta, Sabellidae) in a coastal region of the southern Baltic. — Helgoländer Meeresuntersuchungen,50 (2): 287–298.

    Article  Google Scholar 

  • Clarke, K.R. &Warwick, R.M. (2001): Changes in marine communities: An approach to statistical analysis and interpretation, 2nd edition. — 172 pp.; Plymouth UK (PRIMER-E).

    Google Scholar 

  • Craft, C. &Sacco, J. (2003): Long-term succession of benthic infauna communities on constructedSpartina alterniflora marshes — Marine Ecological Progress Series,257: 45–58.

    Article  Google Scholar 

  • De Grave, S. &Whitaker, A. (1999): Benthic community re-adjustment following dredging of a muddy-maerl matrix. — Marine Pollution Bulletin,38 (2): 102–108.

    Article  Google Scholar 

  • Diaz, R.J. &Rosenberg, R. (1995): Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. — Oceanography and Marine Biology: an Annual Review,33: 245–303.

    Google Scholar 

  • Emmerson, M. (2000): Remedial habitat creation: doesNereis diversicolor play a confounding role in the colonisation and establishment of the pioneering saltmarsh plant,Spartina anglica? — Helgoland Marine Research,54: 110–116.

    Article  Google Scholar 

  • Esselink, P. (2000): Nature management of coastal salt marshes. Interactions between anthropogenic influences and natural dynamics. — 256 pp., Haren (Koeman & Bijkerk).

    Google Scholar 

  • Esser, W., Vöge, S. &Exo, M. (2008): Day-night activity of intertidal invertebrates and methods to estimate prey accessibility for shore-birds. — Senckenbergiana maritima,38 (2): 115–122.

    Google Scholar 

  • Fidalgo E Costa, P., Sardá, R. &Cancela Da Fonseca, L. (1998): Life cycle, growth and production of the polychaeteNereis diversicolor O.F.Müller in three lagoonal estuarine systems of the southwestern Portuguese coast (Odeceixe, Aljezur and Carrapateira). — Écologie,29 (4): 523–533.

    Google Scholar 

  • Gamenick, I., Jahn, A., Vopel, K. &Giere, O. (1996): Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments. — Marine Ecology Progress Series,144: 73–85.

    Article  CAS  Google Scholar 

  • Giere, O. &Pfannkuche, O. (1982): Biology and ecology of marine oligochaeta. A review. — Oceanography and Marine Biology: an Annual Review,20: 173–308.

    Google Scholar 

  • Götting, E. (2002): Entwicklung und ökologische Wertigkeit von Kleientnahmen in Salzwiesen — Wirbellosenfauna. Dienstbericht Forschungsstelle Küste 15/2000. — 84 pp.; Norderney/Wilhelmshaven (Niedersächsisches Landesamt für Ökologie).

    Google Scholar 

  • Hartmann-Schröder, G. (1996): Annelida, Borstenwürmer, Polychaeta. — 648 pp.; Jena (Gustav Fischer).

    Google Scholar 

  • Healy, B. &Walters, K. (1994): Oligochaeta in Spartina stems: the microdistribution of Enchytraeidae and Tubificidae in a salt marsh, Sapelo Island, USA. — Hydrobiologia,278, (1–3): 111–123.

    Article  Google Scholar 

  • Heip, C. (1976): The life-cycle ofCyrideis torosa (Crustacea, Ostracoda). — Oecologia (Berlin),24: 229–245.

    Article  Google Scholar 

  • Heydemann, B. (1981): Ecology of the arthropods of the lower salt marsh. — In:Smit, C.J.,Den Hollander, J.,Van Wingerden, W.K. R.E. &Wolff, W.J. (Ed.): Terrestrial and freshwater fauna of the Wadden Sea area, report 10 of the Wadden Sea working group: 32–57.

  • Hiddink, J.G., Marijnissen, S.A. E., Troost, K. &Wolff, W.J. (2002): Predation on 0-group and older year classes of the bivalveMacoma balthica: interaction of size selection and intertidal distribution of epibenthic predators. — Journal of Experimental Marine Biology and Ecology,269: 223–248.

    Article  Google Scholar 

  • Jahn, A., Gamenick, I. &Theede, H. (1996): Physiological adaptions ofCyprideis torosa (Crustacea, Ostracoda) to hydrogen sulphide. — Marine Ecology Progress Series,142: 215–223.

    Article  Google Scholar 

  • Janas, U., Wocial, J. &Szaniawska, A. (2004): Seasonal and annual changes in the macrozoobenthic populations of the Gulf of Gdansk with respect to hypoxia and hydrogen sulphide. — Oceanologia,46 (1): 85–102.

    Google Scholar 

  • Johnson, D.S., Fleeger, J.W., Galvan, K.A. &Moser, B.E. (2007): Worm holes and their space-time continuum: spatial and temporal variability of macroinfaunal annelids in a northern New England salt marsh. — Estuaries and Coasts,30 (2): 226–237.

    Google Scholar 

  • Karle, M. &Bartholomä, A. (2008): Salt marsh sediments as natural resources for dike construction — sediment recycling in clay pits. — Senckenbergiana maritima,38 (2): 83–92.

    Article  Google Scholar 

  • Kröncke, I., Zeiss, B. &Rensing, C. (2001): Long-term variability in macrofauna species composition off the island of Norderney (East Frisia, Germany) in relation to changes in climatic and environmental conditions. — Senckenbergiana maritima,31: 65–82.

    Article  Google Scholar 

  • Levin, L.A. &Talley, T.S. (2000): Influences of vegetation and abiotic environmental factors on salt marsh invertebrates. — In:Weinstein, M.P. &Kreeger, D.A. (Ed): Concepts and controversies in tidal marsh ecology: 661–707; Dordrecht (Kluwer Academic Publishers).

    Google Scholar 

  • Levin, L.A. &Talley, T.S. (2002): Natural and manipulated sources of heterogenity controlling early faunal development of a salt marsh. — Ecological Applications,12 (6): 1785–1802.

    Article  Google Scholar 

  • Mezquita, F., Olmos, V. &Oltra, R. (2000): Population ecology ofCyprideis torosa (Jones, 1850) in a hyersaline environment of the Western Mediterranean (Santa Pola, Alacant). — Ophelia,53 (2): 119–130.

    Google Scholar 

  • Michaelis, H. (1987): Bestandsaufnahme des eulitoralen Makrobenthos im Jadebusen in Verbindung mit einer Luftbildanalyse. — Jahresbericht Forschungsstelle Küste Norderney,38: 13–97.

    Google Scholar 

  • Neira, C. &Hoepner, T. (1994): The role ofHeteromastus filiformis (Capitellidae, Polychaeta) in organic carbon cycling — Ophelia,39 (1): 55–73.

    Google Scholar 

  • Newell, R.C., Seiderer, L.J. &Hitchcock, D.R. (1998): The impact of dredging works in coastal waters: A review of the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed. — Oceanography and Marine Biology: an Annual Review,36: 127–178.

    Google Scholar 

  • Niermann, U., Bauerfeind, E., Hickel, W. &Westernhagen, H.V. (1990): The recovery of benthos following the impact of low oxygen content in the German Bight. — Netherlands Journal of Sea Research,25 (1–2): 215–226.

    Article  Google Scholar 

  • Nilsson, P., Kurdziel, J.P. &Levinton, J.S. (1997): Heterogeneous population growth, parental effects and genotype-environment interactions of a marine oligochaete. — Marine Biology,130: 181–191.

    Article  Google Scholar 

  • Nilsson, P.G., Levinton, J.S. &Kurdziel, J.P. (2000): Migration of a marine oligochaete: induction of dispersal and microhabitat choice. — Marine Ecology Progress Series,207: 89–96.

    Article  Google Scholar 

  • Nizzoli, D., Bartoli, M., Cooper, M., Welsh, D.T., Underwood, G.J.C. &Viaroli, P. (2007): Implications for oxygen, nutrient fluxes and denitrification rates during the early stage sedimentation colonisation by the polychaeteNereis spp. in four estuaries. — Estuarine, Coastal and Shelf Science,75: 125–134.

    Article  Google Scholar 

  • Paramor, O.A.L. &Hughes, R.G. (2007): Restriction ofSpartina anglica (C.E.Hubbard) marsh development by the infaunal polychaeteNereis diversicolor (O.F.Müller). — Estuarine, Coastal and Shelf Science,71: 202–209.

    Article  Google Scholar 

  • Pearson, T.H. &Rosenberg, R. (1978): Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. — Oceanography and Marine Biology: an Annual Review,16: 229–311.

    Google Scholar 

  • Rahmann, M., Rahmann, H., Kempf, N., Hoffmann, B. &Gloger, H. (1987): Auswirkungen unterschiedlicher landwirtschaftlicher Nutzung auf die Flora und Fauna der Salzwiesen an der ostfriesischen Wattenmeerküste. — Senckenbergiana maritima,19 (3/4): 163–193.

    Google Scholar 

  • Reise, K. (1985): Tidal flat ecology. — 191 pp.; Berlin (Springer).

    Google Scholar 

  • Reiss, H. &Kröncke, I. (2003): Ökofaunistik II — Benthische Makrofauna. — In: Flemming, B.W. (Ed): Untersuchung der ökologischen Entwicklung einer Aussendeichskleipütte als Ergänzung der quantitativen Beweissicherung des Wiederverlandungsprozesses. Abschlußbericht, Bericht 03-1: 99–125; Wilhelmshaven (Senckenberg am Meer).

    Google Scholar 

  • Reiss, H., Meybohm, K. &Kröncke, I. (2006): Cold winter effects on benthic macrofauna communities in near- and offshore regions of the North Sea. — Helgoland Marine Research,60: 224–238.

    Article  Google Scholar 

  • Rumohr, H., Bonsdorff, E. &Pearson, T.H. (1996): Zoobenthic succession in Baltic sedimentary habitats. — Archive of Fishery and Marine Research,44 (3): 197–213.

    Google Scholar 

  • Rumohr, H., Brey, T. &Ankar, S. (1987): A compilation of biometric conversion factors for Baltic invertebrates. — Baltic Marine Biological Publication,9: 1–56.

    Google Scholar 

  • Rumohr, H. (1990): Soft bottom macrofauna: collection, treatment and quality assuarance of samples. — ICES: Techniques in marine environmental sciences,8: 1–18.

    Google Scholar 

  • Talley, T.S. &Levin, L.A. (1999): Macrofaunal succession and community structure inSalicornia marshes of southern California. — Estuarine, Coastal and Shelf Science,49: 713–731.

    Article  Google Scholar 

  • Thiermann, F., Niemeyer, A.S. &Giere, O. (1996): Variations in the sulfide regime and the distribution of macrofauna in an intertidal flat in the North Sea. — Helgoländer Meeresuntersuchungen,50: 87–104.

    Article  Google Scholar 

  • Thrush, S.F. &Whitlatch, R.B. (2001): Recovery dynamics in benthic communities: balancing detail with simplification. — In:Reise, K. (Ed.): Ecological comparisons of sedimentary shores,151: 297–316; Berlin (Springer).

    Google Scholar 

  • Trueblood, D.D., Gallagher, E.D. &Gould, D.M. (1994): Three stages of seasonal succession on the Savin Hill Cove mudflat, Boston Harbor. — Limnology and Oceanography,39 (6): 1440–1454.

    Article  Google Scholar 

  • Van Dalfsen, J.A. &Essink, K. (2001): Benthic community response to sand dredging and dumping off the Dutch Coast. — In:Kröncke, I.,Türkay, M. &Sündermann, J. (Ed.): Burning issues of North Sea ecology, Proceedings of the 14th international Senckenberg Conference North Sea 2000. — Senckenbergiana maritima,31 (2): 329–332.

    Article  Google Scholar 

  • Zajac, R.N., Whitlatch, R.B. &Thrush, S.F. (1998): Recolonization and succession in soft-sediment infaunal communities: the spatial scale of controlling factors. — Hydrobiologia,375/376: 227–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Vöge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vöge, S., Reiss, H. & Kröncke, I. Macrofauna succession in an infilling salt marsh clay pit. Senckenbergiana maritima 38, 93–106 (2008). https://doi.org/10.1007/BF03055284

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03055284

Keywords

Navigation