Skip to main content
Log in

Interphase nuclear structure in plants: role of nuclearDNA content and highly repeatedDNA sequences in chromatin condensation

  • Published:
Proceedings / Indian Academy of Sciences

Abstract

Using the HCl-Giemsa banding technique, the total proportion of condensed chromatin was determined by planimetry in 23 plant species and was found to vary from 14–77%. Comparison of condensed chromatin values withDNA content indicated that the latter was involved in determining the interphase nuclear structure. The actual amounts of differentDNA components in these species were estimated in terms of picograms. Statistical analysis of condensed chromatin values with quantities of different types ofDNA sequences showed the best correlation with highly repeatedDNA sequences, suggesting that these sequences could be playing an important role in governing the species-specific chromatin condensation in plants. The amount ofDNA packaged per unit length of chromatin was also shown to be a determinant of interphase nuclear structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels R and Peacock W J 1979 The arrangement and evolution of highly repeated (satellite)DNA sequences with special reference toDrosophila;Int. Rev. Cytol. Suppl. 8 69–126

    Article  Google Scholar 

  • Appels R, Driscoll C and Peacock W J 1978 Heterochromatin and highly repeatedDNA sequences in rye (Secale cereale);Chromosoma (Berl.) 70 67–89.

    Article  CAS  Google Scholar 

  • Barlow P W 1977 Determinants of nuclear chromatin structure in angiosperms;Ann. Sci. Nat. Bot. (Paris)18 193–206

    CAS  Google Scholar 

  • Bennett M D and Smith J B 1976 NuclearDNA amounts in angiosperms;Philo. Trans. R. Soc. London.B274 227–274

    Article  CAS  Google Scholar 

  • Bennett M D, Smith J B and Heslop-Harrison J S 1982 NuclearDNA amounts in angiosperms;Proc. R. Soc. London B216 174–199

    Article  Google Scholar 

  • Bhave M R, Gupta V S and Ranjekar P K 1985 Molecular analysis of cucurbitaceae genomes III: Arrangement and size distribution of repeat and single copyDNA sequences in four plant species;Plant Syst. Evol. (In press)

  • Bhave M R, Lagu M D and Ranjekar P K 1984 Molecular analysis of cucurbitaceae genomes. I: Comparison ofDNA reassociation kinetics in six plant species;Plant Sci. Lett. 33 127–136

    Article  CAS  Google Scholar 

  • Chikara J and Gupta P K 1979 Karyological studies in the genusSetaria I: Variability withinSetaria italica (L) Beauv.J. Cytol. Genet. 14 75–79

    Google Scholar 

  • Choudhary A D 1978Mutational studies in Allium sativum Linn. Ph.D. Thesis, Nagpur Univeristy, Nagpur, India

    Google Scholar 

  • Darlington C D and LaCour L F 1976Handling of chromosomes 6th edn (London: George Allen and Unwin)

    Google Scholar 

  • Delay C 1948 Recherches sur la structure des noyax quiescents chez des phanerogames;Rev. Cytol. Cytophysiol. Veg. 10 103–228

    CAS  Google Scholar 

  • Deshpande V G and Ranjekar P K 1980 RepetitiveDNA in three gramineae species with lowDNA content Hoppe-Seyler’sZ. Physiol. Chem. 361 1223–1233

    CAS  Google Scholar 

  • Flavell R B and Smith D B 1976 Nucleotide sequence organization in wheat genome;Heredity 37 231–252

    Article  Google Scholar 

  • Gupta V S and Ranjekar P K 1981DNA sequence organization in finger millet (Eleusine coracana);J. Biosci. 3 417–430

    Article  CAS  Google Scholar 

  • Gupta V S and Ranjekar P K 1982 Genome organization in pearl millet;Indian J. Biochem. Biophys. 19 167–170

    PubMed  CAS  Google Scholar 

  • Gupta V S, Gadre S R and Ranjekar P K 1981 NovelDNA sequence organization in rice genome;Biochim. Biophys. Acta 656 147–154

    CAS  Google Scholar 

  • Hutchinson J, Narayan R K J and Rees H 1980 Constraints upon the composition of supplementaryDNA; Chromasoma (Berl.)78 137–145

    Article  CAS  Google Scholar 

  • Ingle J, Pearson C G and Sinclair J 1973 Species distribution and properties of nuclear satelliteDNA in higher plants;Nature (New Biol.) 242 193–197

    Article  CAS  Google Scholar 

  • Jones R N and Rees H 1968 NuclearDNA variation inAllium;Heredity 25 591–605

    Article  Google Scholar 

  • Joshi C P and Ranjekar P K 1980 Technique for heterochromatin visualization and chromosome banding in plants;Nucleus (Calcutta) 23 169–176

    Google Scholar 

  • Joshi C P and Ranjekar P K 1982 Visualization and distribution of heterochromatin in interphase nuclei of several plant species as revealed by new Giemsa banding technique;Cytologia (Tokyo) 47 471–480

    Google Scholar 

  • Kempanna C, Laxmi P V and Nasrath R 1976 Karyotype studies inEleusine coracana;Nucleus (Calcutta) 19 200–203

    Google Scholar 

  • Kurata N and Omura T 1978 Karyotype analysis in rice. I. A new method for identifying all chromosome PairsJpn. J. Genet. 53 251–255

    Article  Google Scholar 

  • Lafontaine J G 1974 Ultrastructural organization in plant cell nuclei; inThe cell nucleus (ed.) H Busch (New York: Academic Press) Vol. 1 pp. 149–185

    Google Scholar 

  • Lakshmi S 1984Genome characterization in plants with special reference to four millet species Ph.D. Thesis, University of Poona, Poona, India

    Google Scholar 

  • Lakshmi S and Ranjekar P K 1984 Novel molecular features of millet genomes;Indian J. Biochem. Biophys. 21 299–303

    Google Scholar 

  • Lakshmi S, Gupta V S and Ranjekar P K 1984 Molecular organization of great millet (Sorghum vulgare)DNA;J. Biosci. 6 795–809

    Article  Google Scholar 

  • Mukherjee P 1979 Karyotype variation in ten strains of Indian radish (Raphanus sativus L.);Cytologia (Tokyo) 44 347–352

    Google Scholar 

  • Nagl W 1979a Condensed interphase chromatin in plant and animal cell nuclei;Plant Syst. Evol. Suppl. 2 247–260

    Google Scholar 

  • Nagl W 1979b Interphase chromatin organization in plant nuclei as determined by genome organization.Hope-Seyler’s Z. Physiol. Chem. 360 331–332

    Google Scholar 

  • Nagl W 1982 Condensed chromatin: species specificity, tissue specificity and cell cycle specificity as monitored by scanning cytometry; inCell growth (ed.) C Nicolini (New York: Plenum Publishing Corporation) pp. 171–218

    Google Scholar 

  • Nagl W and Bachmann K 1980 Condensed chromatin in diploid and allopolyploidMicroseris species with different genome size: A quantitative electron microscopic study;Theor. Appl. Genet. 57 107–111

    Article  Google Scholar 

  • Nagl W and Capesius I 1977 RepetitiveDNA and heterochromatin as factors of karyotype evolution in phylogeny and ontogeny of orchids; inChromosomes today (eds) A de la Chapelle and M Sorsa (Amsterdam: Elsevier/North Holland Biomedical Press) Vol. 6 pp. 141–152

    Google Scholar 

  • Nagl W and Fusenig H P 1979 Types of chromatin organization in plant nuclei;Plant Syst. Evol. Suppl. 2 221–233

    Google Scholar 

  • Nagl W, Jeanjour M, Kling H, Kuhner S, Michels I, Muller T and Stein B 1983 Genome and chromatin organization in higher plants;Biol. Zentralbl. 102 129–148

    CAS  Google Scholar 

  • Narayan R K J and Rees H 1976 NuclearDNA variation inLathyrus;Chromosoma (Berl.) 54 141–154

    Article  CAS  Google Scholar 

  • Narayan R K J and Durrant A 1983DNA distribution in chromosomes ofLathyrus species;Genetica 61 47–53

    Article  CAS  Google Scholar 

  • Noda K and Kasha K J 1978 A modified Giemsa C-banding technique forHordeum species;Stain Technol. 53 155–162

    PubMed  CAS  Google Scholar 

  • Patankar S and Ranjekar P K 1984a Interphase nuclear structure and heterochromatin inPhaseolus plant species;Plant Cell Rep. 3 130–133

    Article  CAS  Google Scholar 

  • Patankar S and Ranjekar P K 1984b Condensed chromatin and its under-replication during root differentiation in leguminosae;Plant Cell Rep. 3 250–253

    Article  CAS  Google Scholar 

  • Patau K 1952 Absorption microphotometry of irregular shaped objects;Chromosoma (Berl.) 5 341–362

    Article  CAS  Google Scholar 

  • Pegington C and Rees H 1970 Chromosome weights and measures in the triticineae;Heredity 25 195–205

    Article  Google Scholar 

  • Ranjekar P K 1982 Analysis of plant genomes—A molecular approach;J. Sci. Ind Res. 41 384–393

    CAS  Google Scholar 

  • Ranjekar P K, Lafontaine J G and Pallota D 1974 Characterization of repetitiveDNA in rye (Secale cereale);Chromosoma (Berl.) 48 427–440

    Article  CAS  Google Scholar 

  • Ranjekar P K, Pallota D and Lafontaine J G 1976 Analysis of the genome of plants. II. Characterization of repetitiveDNA in barley (Hordeum vulgare) and wheat (Triticum aestivum);Biochim. Biophys. Acta 425 30–40

    PubMed  CAS  Google Scholar 

  • Ranjekar P K, Pallota D and Lafontaine J G 1978a Analysis of plant genomes. III. Denaturation and reassociation properties of cryptic satelliteDNAS in barley (Hordeum vulgare) and wheat (Triticum aestivum);Biochim. Biophys. Acta 520 103–110

    PubMed  CAS  Google Scholar 

  • Ranjekar P K, Pallota D and Lafontaine J G 1978b Analysis of plant genomes. IV. Isolation and characterization of satelliteDNA components from two dicotyledons, cucumber (Cucumis sativus) and radish (Raphanus sativus);Can. J. Biochem. 56 808–815

    Article  PubMed  CAS  Google Scholar 

  • Ranjekar P K, Pallota D and Lafontaine J G 1978c Analysis of plant genomes. V. Comparative study of molecular properties ofDNAS of sevenAllium species;Biochem. Genet. 16 957–970

    Article  PubMed  CAS  Google Scholar 

  • Sarbhoy R K 1980 Karyological studies in the genusPhaseolus Linn;Cytologia (Tokyo) 45 363–373

    Google Scholar 

  • Sen R and Datta K B 1978 Cytological studies in some Indian cultivated varieties ofCucumis L;J. Cytol. Genet. 13 16–22

    Google Scholar 

  • Seshadri M and Ranjekar P K 1979 Genome characterization of three plant species belonging to genusPhaseolus;Indian J. Bioche. Biophys. 16 1–5

    CAS  Google Scholar 

  • Seshadri M and Ranjekar P K 1980a Denaturation and renaturation properties of the genome ofPhaseolus vulgaris;Hoppe-Seyler’s Z. Physiol. Chem. 361 1041–1048

    PubMed  CAS  Google Scholar 

  • Seshadri M and Ranjekar P K 1980b An unusual pattern of genome organization in twoPhaseolus plant species;Biochim. Biophys. Acta 610 211–220

    PubMed  CAS  Google Scholar 

  • Singh A K and Roy R P 1979 Cytological studies inTrichosanthes L;J. Cytol. Genet. 14 50–57

    Google Scholar 

  • Smith D B and Flavell R B 1977 Nucleotide sequence organization in rye genome;Biochim. Biophys. Acta 474 82–97

    PubMed  CAS  Google Scholar 

  • Stack S M and Comings D E 1979 Chromosomes andDNA ofAllium cepa;Chromosoma (Berl.) 70 161–182

    Article  CAS  Google Scholar 

  • Timmis J N, Deumling B and Ingle J 1975 Localization of satelliteDNA sequences in nuclei and chromosomes of two plants;Nature (New Biol.) 257 152–155

    Article  CAS  Google Scholar 

  • Vosa C G 1974 The basic karyotype of rye (Secale cereale) analysed with Giemsa and fluorescence methods;Heredity 33 403–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NCL Communication No. 3455

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patankar, S., Joshi, C.P., Ranade, S.A. et al. Interphase nuclear structure in plants: role of nuclearDNA content and highly repeatedDNA sequences in chromatin condensation. Proc. Indian Acad. Sci. 94, 539–551 (1985). https://doi.org/10.1007/BF03053221

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03053221

Keywords

Navigation