Skip to main content
Log in

The role of adrenochrome in stimulating the oxidation of catecholamines

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Adrenochrome, a stable oxidation product formed after oxidation of adrenaline, strongly stimulates oxygen uptake occurring during the autoxidation of adrenaline, other catecholamines and ascorbate. Oxygen consumed is converted to hydrogen peroxide suggesting the occurrence of a redox cycling process. The reduction of adrenochrome operated by adrenaline is accelerated by the exclusion of oxygen indicating that the oxidation of adrenaline occurs directly and superoxide anion does not necessarily mediate it. Oxygen consumption, observed in the catecholamine/adrenochrome and ascorbate/adrenochrome systems, is due to the autoxidation of leucoadrenochrome that, at variance with adrenaline, easily autoxidizes also at physiological pH. Therefore, in these systems, leucoadrenochrome appears to be the major determinant of the production of superoxide anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTPA:

diethylenetriamine pentaacetic acid

Reference

  • Ball, E.G. and Chen, T. (1933) Studies on oxidation-reduction. XX. Epinephrine and related compounds.J. Biol. Chem. 102, 691–719.

    CAS  Google Scholar 

  • Bindoli, A., Rigobello, M.P. and Galzigna, L. (1988) Production of reduced forms of oxygen by adrenochrome in the presence of ascorbate, microsomes and submitochondrial particles. In: Rice Evans, C. and Dormandy, T. (Eds.),Free Radicals: Chemistry, Pathology and Medicine (Richelieu Press, London), pp. 293–300.

    Google Scholar 

  • Bindoli, A., Rigobello, M.P. and Galzigna, L. (1989) Toxicity of aminochromes.Toxicology Lett. 48, 3–20.

    Article  CAS  Google Scholar 

  • Bindoli, A., Deeble, D.J., Rigobello, M.P. and Galzigna, L. (1990a) Direct and respiratory chain-mediated redox cycling of adrenochrome.Biochim. Biophys. Acta 1016, 349–356.

    Article  PubMed  CAS  Google Scholar 

  • Bindoli, A., Rigobello, M.P. and Galzigna, L. (1990b) Reduction of adrenochrome by rat liver and brain DT-diaphorase.Free Rad. Res. Coram. 8, 295–298.

    Article  CAS  Google Scholar 

  • Bindoli, A., Rigobello, M.P. and Deeble, D.J. (1992) Biochemical and toxicological properties of the oxidation products of catecholamines.Free Radical Biol. Med. 13, 391–405.

    Article  CAS  Google Scholar 

  • Bors, W., Saran, M., Michael, C, Lengfelder, E., Fuchs, C. and Spottl, R. (1975) Pulse-radiolytic investigation of catechols and catecholamines. I. Adrenaline and adrenochrome.Int. ]. Radiat. Biol. 28, 353–371.

    Article  CAS  Google Scholar 

  • Bors, W., Michel, C., Saran, M. and Lengfelder, E. (1978a). The involvement of oxygen radicals during the autoxidation of adrenalin.Biochim. Biophys. Acta 540, 162–172.

    PubMed  CAS  Google Scholar 

  • Bors, W., Saran, M., Lengfelder, E., Michel, C, Fuchs, C. and Frenzel, C. (1978b) Detection of oxygen radicals in biological reactions.Photochem. Photobiol. 28, 629–638.

    Article  PubMed  CAS  Google Scholar 

  • Cazzaro, E, Rigobello, M.P. and Bindoli, A. (1996) Personal computer control of electrochemical detectors utilized for mitochondrial studies.Comput. Methods Progr. Biomed. 51, 141–151.

    Article  CAS  Google Scholar 

  • Cook, J.A., Wink, D.A., Blount, V., Krishna, M.C. and Hanbauer, I. (1996) Role of antioxidants in the nitric oxide-elicited inhibition of dopamine uptake in cultured mesencephalic neurons. Insight into potential mechanisms of nitric oxide-mediated neurotoxicity.Neurochem. Intern. 28, 609–617.

    Article  CAS  Google Scholar 

  • Daveu, C, Servy, C, Dendane, M., Marin, P. and Ducrocq, C. (1997) Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide.Nitric Oxide 1, 234–243.

    Article  PubMed  CAS  Google Scholar 

  • Ernster, L. (1967) DT-diaphorase.Methods Enzymol. 10, 309–317.

    Article  CAS  Google Scholar 

  • Ernster, L. (1987) DT-diaphorase: a historical review.Chemica Scripta 27A, 1–13.

    CAS  Google Scholar 

  • Estabrook, R.W. (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios.Methods Enzymol. 10, 41–47.

    Article  CAS  Google Scholar 

  • Falk, J.E. (1949) The formation of hydrogen carriers by haematin-catalyzed peroxidations. 2. Some reactions of adrenaline and adrenochrome.Biochem. J. 44, 369–373.

    CAS  Google Scholar 

  • Fornstedt, B., Rosengren, E. and Carlsson, A. (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species.Neuropharmacology 25, 451–454.

    Article  PubMed  CAS  Google Scholar 

  • Green, D.E. and Richter, D. (1937) Adrenaline and adrenochrome.Biochem. J. 31, 596–616.

    PubMed  CAS  Google Scholar 

  • Hastings, T.G. (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase.J. Neurochem. 64, 919–924.

    PubMed  CAS  Google Scholar 

  • Hawley, M.D., Tatawawadi, S.V., Piekarsky, S. and Adams, R.N. (1967) Electrochemical studies of the oxidation pathways of catecholamines.J. Am. Chem. Soc. 89, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Heacock, R.A. (1959) The chemistry of adrenochrome and related compounds.Chem. Rev. 59, 181–237.

    Article  CAS  Google Scholar 

  • Heacock, R.A. and Powell, W.S. (1973) Adrenochrome and related compounds. In: Ellis, G.P. and West, G.B. (Eds.),Progress in Medicinal Chemistry. Vol. 9 (North Holland, Amsterdam) pp. 275–339.

    Google Scholar 

  • Hoffer, A., Osmond, H. and Smythies, J.R. (1954) Schizophrenia. A new approach. Part II.J. Ment. Sci. 100, 29–45.

    PubMed  CAS  Google Scholar 

  • Jewett, S.L., Eddy, L.J. and Hochstein, P. (1989) Is the autoxidation of catecholamines involved in ischemia-reperfusion injury?Free Radical Biol. Med. 6, 185–188.

    Article  CAS  Google Scholar 

  • Kalyanaraman, B., Felix, C.C. and Sealy, R.C. (1984) Electron-spin resonance-spin stabilization of semiquinones produced during oxidation of epinephrine and its analogues.J. Biol. Chem. 259, 354–358.

    PubMed  CAS  Google Scholar 

  • Kalyanaraman, B., Korytowski, W., Pilas, B., Sarna, T, Land, E.J. and Truscott, T.G. (1988) Reaction between ortho-semiquinones and oxygen: pulse radiolysis, electron spin resonance and oxygen uptake studies.Arch. Biochem. Biophys. 266, 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folia phenol reagent.J. Biol. Chem. 193, 265–293.

    PubMed  CAS  Google Scholar 

  • Mattammal, M.B., Strong, R., Lakshmi, V.M., Chung, H.D. and Stephenson, A.H. (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease.J. Neurochem. 64, 1645–1654.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, S.B., Henderson, A.H. and Campbell, A.K. (1985a) The adrenochrome pathway: the major route for adrenalin catabolism by polymorphonuclear leucocytes.J. Mol. Cell. Cardiol. 17, 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, S.B., Hallet, M.B., Henderson, A.H. and Campbell, A.K. (1985b) The adrenochrome pathway: a potential catabolic route for adrenaline metabolism in inflammatory disease.Adv. Myocardiol. 6, 367–381.

    PubMed  CAS  Google Scholar 

  • Misra, H.P. and Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.J. Biol. Chem. 247, 3170–3175.

    PubMed  CAS  Google Scholar 

  • Mukherjee, T. (1987) One-electron reduction of juglone (5-hydroxy-l,4-naphthoquinone): a pulse radiolysis study.Radiat. Phys. Chem. 29, 455–462.

    CAS  Google Scholar 

  • Pileblad, E., Slivka, A., Bratvold, D. and Cohen, G. (1988) Studies on the autoxidation of dopamine: interaction with ascorbate.Arch. Biochem. Biophys. 263, 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Rosengren, E., Linder-Eliasson, E. and Carlsson, A. (1985) Detection of 5-S-cysteinyl-dopamine in human brain.J. Neurol. Transm. 63, 247–253.

    Article  CAS  Google Scholar 

  • Smythies, J. (1996) On the function of neuromelanin.Proc. R. Soc. London B 263, 487–489.

    Article  CAS  Google Scholar 

  • Smythies, J. and Galzigna, L. (1998) The oxidative metabolism of catecholamines in the brain: a review.Biochim. Biophys. Acta 1380, 159–162.

    PubMed  CAS  Google Scholar 

  • Vulpian, E.F.A. (1856) Notes sur quelques reactions propres a la substance des capsules surrenales.C.R. Acad. Sci. 43, 663–665.

    Google Scholar 

  • Wiesner, K. (1942) Polarographische Untersuchung des Adrenochroms.Biochem. Z. 313, 48–61.

    CAS  Google Scholar 

  • Yoshie, Y. and Ohshima, H. (1997) Synergistic induction of DNA strand breakage caused by nitric oxide together with catecholamines: implication for neurodegenerative disease.Chem. Res. Toxicol. 10, 1015–1022.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bindoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindoli, A., Scutari, G. & Rigobello, M.P. The role of adrenochrome in stimulating the oxidation of catecholamines. neurotox res 1, 71–80 (1999). https://doi.org/10.1007/BF03033271

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033271

Keywords

Navigation