Skip to main content
Log in

Molecular targets of lead in brain neurotoxicity

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The detrimental effects of lead poisoning have been well known since ancient times, but some of the most severe consequences of exposure to this metal have only been described recently. Lead (Pb2+) affects the higher functions of the central nervous system and undermines brain growth, preventing the correct development of cognitive and behavioral functions. As an established neurotoxin, Pb2+ crosses the blood-brain barrier rapidly and concentrates in the brain. The mechanisms of lead neurotoxicity are complex and still not fully under-stood, but recent findings recognized that both Ca2+-dependent proteins and neurotransmitters receptors represent significant targets for Pb2+. In particular, acute and chronic exposure to lead would predominantly affect two specific protein complexes: protein kinase C and theN-methyl-D-aspartate subtype of glutamate receptor. These protein complexes are deeply involved in learning and cognitive functions and are also thought to interact significantly with each other to mediate these functions. This review outlines the most recent hypotheses and evidences that link lead poisoning to impairment of these protein functions, as well as thein vitro experimental approaches that are most likely to provide information on basic mechanicistic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akazawa C, R Shigemoto, Y Bessho, S Nakanishi and N Mizuno (1994) Differential expression of fiveN-methyl-D-aspartate receptor subunit MRNAs in the cerebellum of developing and adult rats.J. Comp. Neurol. 347, 150–160.

    Article  PubMed  CAS  Google Scholar 

  • Alkondon M, AC Costa, V Radhkrishnan, RS Aronstam and EX Albuquerque (1990) Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead.FEBS Lett. 261, 124–130.

    Article  PubMed  CAS  Google Scholar 

  • Banks EC, LE Ferretti and DW Shucard (1997) Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence.Neurotoxicology 18, 237–281.

    PubMed  CAS  Google Scholar 

  • Baranano DE, CD Ferris and SH Snyder (2001) Atypical neural mesengers.Trends Neurosci. 24, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Bellinger D, J Sloman, A Leviron, M Rabinowitz, HL Needleman and C Waternaux (1991) Low level lead exposure and children's cognitive function in the preschool years.Pediatrics 87, 219–227.

    PubMed  CAS  Google Scholar 

  • Bernal J, J-H Lee, LL Cribbs and E Perez-Reyes (1997) Full reversal of Pb++ block of L-rype of Ca++ channels requires treatment with heavy metal antidotes.J. Pharm. Exp. Ther. 282, 172–180.

    CAS  Google Scholar 

  • Bourjeily N and JB Suszkiw (1997) Developmental cholinotoxicity of lead: loss of septal cholinergic neurons and long-term changes in cholinergic innervation of the hippocampus in perinatally lead-exposed rats.Brain Res. 771, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Bouton CM and J Pevsner (2000) Effects of lead on gene expression.Neurotoxicology 21, 1045–1055.

    PubMed  CAS  Google Scholar 

  • Bouton CM, LP Frelin, CE Forde, H Arnold Godwin and J Pevsner (2001) Synaptotagmin I is a molecular target for lead.J. Neurochem. 76, 1724–1735.

    Article  PubMed  CAS  Google Scholar 

  • Boyce S, A Wyatt, JK Webb, R O'Donnell, G Mason, M Rigby, D Sirinathsinghji, RG Hill and NM Rupniak (1999) Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn,Neuropharmacology 38, 611–623.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury MW and R Deane (1993) Perm eability of the blood-brain barrier to lead.Neurotoxicology 14, 131–136.

    PubMed  CAS  Google Scholar 

  • Braga MF, EF Pereira and EX Albuquerque (1999a) Nanomolar concentrations of lead inhibit glutamatergic and GABA ergic transmission in hippocampal neurons.Brain Res. 826, 22–34.

    Article  PubMed  CAS  Google Scholar 

  • Braga MF, EF Pereira, M Marchioro and EX Albuquerque (1999b) Lead increases tetrodotoxin-insensitive spontaneous release of glutamate and GABA from hippocampal neurons.Brain Res. 826, 10–21.

    Article  PubMed  CAS  Google Scholar 

  • Bressler J, KA Kim, T Chakraborti and G Goldstein (1999) Molecular mechanisms of lead neurotoxicity.Neurochem. Res. 24, 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Büsselberg D, ML Evans, HL Haas and DO Carpenter (1993) Blockade of mammalian and invertebrate calcium channels by lead.Neurotoxicology 14, 249–258.

    PubMed  Google Scholar 

  • Büsselberg D, D Michael and B Platt (1994a) Pb2+ reduces voltage-andN-methyl-D-aspartate (NMDA)-activated calcium channel currents.Cell. Mol. Neurobiol. 14, 711–722.

    Article  PubMed  Google Scholar 

  • Büsselberg D, B Platt, D Michael, D Carpenter and H Haas (1994b) Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+, and Al3+.J. Neurophysiol. 71, 1491–1497.

    PubMed  Google Scholar 

  • Cai L, DY Ruan, YZ Xu, L Liu, XM Meng and XQ Dai (2001) Effects of lead exposure on long-term potentiation induced by 2-deoxy-D-glucose in area CA1 of rat hippocampusin vitro.Neurotoxicol. Teratol. 23, 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter DO, MR Matthews, PJ Parsons and N Hori (1994) Longterm potentiation in the piriform cortex is blocked by lead.Cell. Mol. Neurobiol. 14, 723–733.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson T (1993) Molecular and ionic mimicry of toxic metals.Annu. Rev. Pharmacol. Toxicol. 32, 545–571.

    Article  Google Scholar 

  • Clemedson C, M Nordin-Andersson, HF Bjerregaard, J Clausen, A Forsby, H Gustafsson, U Hansson, B Isomaa, C Jorgensen, A Kolman, N Kotova, G Krause, U Kristen, K Kurppa, L Romert and E Scheers (2002) Development of an in vitro test battery for the estimation of acute human systemic toxicity: An outline of the EDIT project. Evaluation-guided Development of NewIn Vitro Test Batteries.Altern. Lab. Anim. 30, 313–321.

    PubMed  CAS  Google Scholar 

  • Cory-Slechta DA (1995) Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neurotransmitter system functions.Annu. Rev. Pharmacol. Toxicol. 35, 391–415.

    PubMed  CAS  Google Scholar 

  • Cory-Slechta DA (1997) Relationships between Pb-induced changes in neurotransmitter system function and behavioral toxicity.Neurotoxicology 18, 673–688.

    PubMed  CAS  Google Scholar 

  • Cory-Slechta DA, M Garcia-Osuna and IT Greenamyre (1997) Lead-induced changes in NMDA receptor complex binding: correlations with learning accuracy and with sensitivity to learning impairments caused by MK-801 and NMDA administration.Behav. Brain Res. 85, 161–174.

    Article  PubMed  CAS  Google Scholar 

  • Costa LG and DA Fox (1983) A selective decrease of cholinergic muscarinic receptors in the visual cortex of adult rats following developmental lead exposure.Brain Res. 276, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Crumpton T, DS Atkins, NH Zawia and S Barone Jr (2001) Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNA-binding.Neurotoxicology 22, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy S, S Brickley and M Farrant (2001) NMDA receptor subunits: diversity, development and disease.Curr. Opin. Neurobiol.,11, 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Deane R and MW Bradbury (1990) Transport of lead-203 at the blood-brain barrier during short cerebrovascular perfusion with saline in the rat.J. Neurochem. 54, 905–914.

    Article  PubMed  CAS  Google Scholar 

  • Diaz RS and J Monreal (1995) Protein-independent lead permeation through myelin lipid liposomes. Mol. Pharmacol.47, 766–771.

    PubMed  CAS  Google Scholar 

  • Dietrich KN, MD Ris, PA Succop, OG Berger and RL Bornschein (2001) Early exposure to lead and juvenile delinquency.Neurotoxicol. Teratol. 23, 511–518.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, K Borges, D Bowie and SF Traynelis (1999) The glutamate receptor ion channels.Pharm. Rev. 51, 7–61.

    PubMed  CAS  Google Scholar 

  • Dyatlov VA, OM Dyatlova, PJ Parsons, DA Lawrence and DO Carpenter (1998) Lipopolysaccharide and interleukin-6 enhance lead entry into cerebellar neurons: application of a new and sensitive flow cytometric technique to measure intracellular lead and calcium concentrations.Neurotoxicology 19, 293–302.

    PubMed  CAS  Google Scholar 

  • Farrant M, D Feldmeyer, T Takahashi and SG Cull-Candy (1994) NMDA-receptor channel diversity in the developing cerebellum.Nature 368, 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein Y, ME Markowitz and JF Rosen (1998) Low-level lead-induced neurotoxicity in children: an update on central nervous system effects.Brain Res. Brain Res. Rev. 27, 168–176.

    Article  PubMed  CAS  Google Scholar 

  • Gavazzo P, A Gazzoli, M Mazzolini and C Marchetti (2001) Lead inhibition of NMDA channels in native and recombinant receptors.Neuroreport 12, 3121–3125.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert ME, CM Mack and SM Lasley (1996) Chronic developmental lead exposure increases the threshold for long-term potentiation in rat dentate gyrusin vivo.Brain Res. 736, 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert ME, CM Mack and SM Lasley (1999) The influence of developmental period of lead exposure on long-term potentiation in the adult rat dentate gyrusin vivo.Neurotoxicology 20, 57–69.

    PubMed  CAS  Google Scholar 

  • Goldstein GW (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism.Neurotoxicology 14, 97–101.

    PubMed  CAS  Google Scholar 

  • Grant SG and TJ O'Dell (2001) Multiprotein complex signaling and the plasticity problem.Curr. Opin. Neurobiol. 11, 363–368.

    Article  PubMed  CAS  Google Scholar 

  • Gu Y and LY Huang (1994) Modulation of glycine affinity for NMDA receptors by extracellular Ca2+ in trigeminal neurons.J. Neurosci. 14, 4561–4570.

    PubMed  CAS  Google Scholar 

  • Guilarte TR (1997a) Glutamatergic system and developmental lead neurotoxicity.Neurotoxicology 18, 665–672.

    PubMed  CAS  Google Scholar 

  • Guilarte TR (1997b) Pb2+ inhibits NMDA receptor function at high and low affinity sites: developmental and regional brain expression.Neurotoxicology 18, 43–52.

    PubMed  CAS  Google Scholar 

  • Guilarte TR and JL McGlothan (1998) Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure.Brain Res. 790, 98–107.

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR and RC Miceli (1992) Age-dependent effects of lead on [3H]MK-801 binding to the NMDA receptor-gated ionophore:in vitro andin vivo studies.Neurosci. Lett. 148, 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR, RC Miceli, L Altmann, F Weinsberg, G Winneke and H Wiegand (1993) Chronic prenatal and postnatal Pb2+ exposure increases [3H]MK801 binding sites in adult rat forebrain.Eur. J. Pharmacol. 248, 273–275.

    PubMed  CAS  Google Scholar 

  • Guilarte TR, RC Miceli and DA Jett (1995) Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: effects of neuronal development.Neurotoxicology 16, 63–71.

    PubMed  CAS  Google Scholar 

  • Guilarte TR, JL McGlothan and MK Nihei (2000) Hippocampal expression ofN-methyl-D-aspartate receptor (NMDAR1) subunit splice variant mRNA is altered by developmental exposure to Pb(2+).Brain Res. Mol. Brain Res. 76, 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Gutowski M, L Altmann, K Sveinsson and H Wiegand (1998) Synaptic plasticity in the CA1 and CA3 hippocampal region of pre- and postnatally lead-exposed rats.Toxicol. Lett. 95, 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Hanas JS, JS Rodgers, JA Bantle and YG Cheng (1999) Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.Mol. Pharmacol. 56, 982–988.

    PubMed  CAS  Google Scholar 

  • Hartwig A (2001) Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function.Antioxid. Redox Signal 3, 625–634.

    Article  PubMed  CAS  Google Scholar 

  • Hashemzadeh-Gargari H and TR Guilarte (1999) Divalent cations modulate N-methyl-D-aspartate receptor function at the glycine site.J. Pharm. Exp. Ther. 290, 1356–1362.

    CAS  Google Scholar 

  • Hoffmann H, T Gremme, H Hatt and K Gottmann (2000) Synaptic activity-dependent development regulation of NMDA receptor subunit expression in cultured neocortical neurons.J. Neurochem. 75, 1590–1599.

    Article  PubMed  CAS  Google Scholar 

  • Holme JA and E Dybing (2002) The use of in vitro methods for hazard characterisation of chemicals.Toxicol. Lett. 127, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Hori N, D Busselberg, MR Matthews, PJ Parsons and DO Carpenter (1993) Lead blocks LTP by an action not at NMDA receptors.Exp. Neurol. 119, 192–197.

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, CM Bouton, J Pevsner and J Laterra (2000) Induction of vascular endothelial growth factor in human astrocytes by lead. Involvement of a protein kinase C/activator protein-1 complex-dependent and hypoxia-inducible factor 1-independent signaling pathway.J. Biol. Chem. 275, 27874–27882.

    PubMed  CAS  Google Scholar 

  • Husi H, MA Ward, JS Choudhary, WP Blackstock and SG Grant (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes.Nature Neurosci. 3, 661–669.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, M Alkondon, JG Montes and EX Albuquerque (1995) Ontogenically related properties ofN-methyl-D-aspartate receptors in rat hippocampal neurons and the age-specific sensitivity of developing neurons to lead.J. Pharm. Exp. Ther. 273, 1459–1470.

    CAS  Google Scholar 

  • Jadhav AL and GT Ramesh (1997) Pb-induced alterations in tyrosine hydroxylase activity in rat brain.Mol. Cell. Biochem. 175, 137–141.

    Article  PubMed  CAS  Google Scholar 

  • Jett DA, AC Kuhlmann, SJ Farmer and TR Guilarte (1997) Agedependent effects of developmental lead exposure on performance in the Morris water maze.Pharmacol. Biochem. Behav. 57, 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Johnston MV and GW Goldstein (1998) Selective vulnerability of the developing brain to lead.Curr. Opin. Neurol. 11, 689–693.

    PubMed  CAS  Google Scholar 

  • Kern M, M Wisniewski, L Cabell and G Audesirk (2000) Inorganic lead and calcium interact positively in activation of calmodulin.Neurotoxicology 21, 353–363.

    PubMed  CAS  Google Scholar 

  • Kerper LE and PM Hinkle (1997a) Cellular uptake of lead is activated by depletion of intracellular calcium stores.J. Biol. Chem. 272, 8346–8352.

    Article  PubMed  CAS  Google Scholar 

  • Kerper LE and PM Hinkle (1997b) Lead uptake in brain capillary endothelial cells: activation by calcium store depletion.Toxicol. Appl. Pharmacol. 146, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Kew JN, JG Richards, V Mutel and JA Kemp (1998) Developmental changes in NMDA receptor glycine affinity and ifenprodil sensitivity reveal three distinct populations of NMDA receptors in individual rat cortical neurons.J. Neurosci. 18, 1935–1943.

    PubMed  CAS  Google Scholar 

  • Kim KA, T Chakraborti, GW Goldstein and JP Bressler (2000) Immediate early gene expression in PC12 cells exposed to lead: requirement for protein kinase C.J. Neurochem. 74, 1140–1146.

    Article  PubMed  CAS  Google Scholar 

  • Kim KA, T Chakraborti, G Goldstein, M Johnston and J Bressler (2002) Exposure to lead elevates induction of zif268 and Arc mRNA in rats after electroconvulsive shock: the involvement of protein kinase C.J. Neurosci. Res. 69, 268–277.

    Article  PubMed  CAS  Google Scholar 

  • Kivalo P, R Virtanen, K Wickstrom and M Wilson (1976) An evaluation of some commercial lead(II)-selective electrodes.Analytica Chimica Acta 87, 401–409.

    Article  CAS  Google Scholar 

  • Krupp JJ, B Vissel, SF Heinemann and GL Westbrook (1996) Calcium-dependent inactivation of recombinantN-methyl-D-aspartate receptors is NR2 subunit specific.Mol. Pharmacol. 50, 1680–1688.

    PubMed  CAS  Google Scholar 

  • Kuhlmann AC, JL McGlothan and TR Guilarte (1997) Developmental lead exposure causes spatial learning deficits in adult rats.Neurosci. Lett. 233, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Lasley SM and ME Gilbert (1996) Presynaptic glutamatergic function in dentate gyrusin vivo is diminished by chronic exposure to inorganic lead.Brain Res. 736, 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Lasley SM and ME Gilbert (1999) Lead inhibits the ratN-methyl-D-aspartate receptor channel by binding to a site distinct from the zinc allosteric site.Toxicol. Appl. Pharmacol. 159, 224–233.

    Article  PubMed  CAS  Google Scholar 

  • Lasley SM and ME Gilbert (2000) Glutamatergic components under-lying lead-induced impairments in hippocampal synaptic plasticity.Neurotoxicology 21, 1057–1068.

    PubMed  CAS  Google Scholar 

  • Lasley SM and ME Gilbert (2002) Rat hippocampal glutamate and GABA release exhibit biphasic effects as a function of chronic lead exposure level.Toxicol. Sci. 66, 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Lasley SM, J Polan-Curtain and DL Armstrong (1993) Chronic exposure to environmental levels of lead impairsin vivo induction of long-term potentiation in rat hippocampal dentate.Brain Res. 614, 347–351.

    Article  PubMed  CAS  Google Scholar 

  • Lasley SM, MC Green and ME Gilbert (2001) Rat hippocampal NMDA receptor binding as a function of chronic lead exposure level.Neurotoxicol. Teratol. 23, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Lau WK, CW Yeung, PW, Lui, LH Cheung, NT Poon and KK Yung (2002) Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure.Brain Res. 932, 10–24.

    Article  PubMed  CAS  Google Scholar 

  • Legare ME, R Barhoumi, E Hebert, GR Bratton, RC Burghardt and E Tiffany-Castiglioni (1998) Analysis of Pb2+ entry into cultured astroglia.Toxicol. Sci. 46, 90–100.

    PubMed  CAS  Google Scholar 

  • Lim DK and IK Ho (1998) Responses toN-methyl-D-aspartate and kainic acid in cerebellar granule cells of lead-exposed rat pups.Neurotoxicology 19, 49–55.

    PubMed  CAS  Google Scholar 

  • Lindahl LS, L Bird, ME Legare, G Mikeska, GR Bratton and E Tiffany-Castiglioni (1999) Differential ability of astroglia and neuronal cells to accumulate lead: dependence on cell type and on degree of differentiation.Toxicol. Sci. 50, 236–243.

    Article  PubMed  CAS  Google Scholar 

  • Linden AM, J Vasanen, M Storvik, M Lakso, ER Korpi, G Wong and E Castren (2001) Uncompetitive antagonists of theN-methyl-D-aspartate (NMDA) receptors alter the mRNA expression of proteins associated with the NMDA receptor complex.Pharmacol. Toxicol. 88, 98–105.

    PubMed  CAS  Google Scholar 

  • Long GJ, JF Rosen and FA Schanne (1994) Lead activation of protein kinase C from rat brain. Determmation of free calcium, lead, and zinc by19F NMR.J. Biol. Chem. 269, 834–837.

    PubMed  CAS  Google Scholar 

  • Losi G, K Prybylowski, Z Fu, Jh Luo and S Vicini (2002) Silent synapses in developing cerebellar granule neurons.J Neurophysiol. 87, 1263–1270.

    PubMed  CAS  Google Scholar 

  • Luo ZD and HA Berman (1997) The influence of Pb2+ on expression of acetylcholinesterase and the acetylcholine receptor.Toxicol. Appl. Pharmacol. 145, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Ma T, HH Chen, HL Chang, AS Hume and IK Ho (1997a) Effects of chronic lead exposure on [3H]MK-801 binding in the brain of rat.Toxicol. Lett. 92, 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Ma T, HH Chen, DK Lim, AS Hume and IK Ho (1997b) Effects of subacute lead exposure on [3H]MK-801 binding in hippocampus and cerebral cortex in the adult rat.Brain Res. 760, 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Markovac J and GW Goldstein (1988) Picomolar concentrations of lead stimulate brain protein kinase C.Nature 334, 71–73.

    Article  PubMed  CAS  Google Scholar 

  • Markowitz M (2000) Lead poisoning: a disease for the next millennium,Curr. Probl. Pediatr. 30, 62–70.

    Article  PubMed  CAS  Google Scholar 

  • Matthews MR, PJ Parsons and DO Carpenter (1993) Solubility of lead as lead (II) chloride in HEPES-Ringer and artificial seawater (Ca-ASW) solutions.Neurotoxicology 14, 283–290.

    PubMed  CAS  Google Scholar 

  • Mazzolini M, S Traverso and C Marchetti (2001) Multiple pathways of Pb2+ permeation in rat cerebellar granule neurones.J. Neurochem. 79, 407–416.

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, N Burnashev, DJ Laurie, B Sakmann and PH Seeburg (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.Neuron 12, 529–540.

    Article  PubMed  CAS  Google Scholar 

  • Morgan RE, H Garavan, EG Smith, LL Driscoll, DA Levitsky and BJ Strupp (2001) Early lead exposure produces lasting changes in sustained attention, response initiation, and reactivity to errors.Neurotoxicol. Teratol. 23, 519–531.

    Article  PubMed  CAS  Google Scholar 

  • Murakami K, G Feng and SG Chen (1993) Inhibition of brain protein kinase C subtypes by lead.J. Pharm. Exp. Ther. 264, 757–761.

    CAS  Google Scholar 

  • Murphy KJ and CM Regan (1999) Low-level lead exposure in the early postnatal period results in persisting neuroplastic deficits associated with memory consolidation.J. Neurochem. 72, 2099–2104.

    Article  PubMed  CAS  Google Scholar 

  • Needleman HL (1993) The current status of childhood low-level lead toxicity.Neurotoxicology 14, 161–166.

    PubMed  CAS  Google Scholar 

  • Nehru B and P Sidhu (2001) Behavior and neurotoxic consequences of lead on rat brain followed by recovery.Biol. Trace. Elem. Res. 84, 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Nihei MK and TR Guilarte (1999) NMDAR-2A subunit protein expression is reduced in the hippocampus of rats exposed to Pb2+ during development.Brain. Res. Mol. Brain. Res. 66, 42–49.

    Article  PubMed  CAS  Google Scholar 

  • Nihei MK and TR Guilarte (2001) Molecular changes, in glutamatergic synapses induced by Pb2+: association with deficits of LTP and spatial learning.Neurotoxicology 22, 635–643.

    Article  PubMed  CAS  Google Scholar 

  • Nihei MK, NL Desmond, JL McGlothan, AC Kuhlmann and TR Guilarte (2000)N-methyl-D-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning.Neuroscience 99, 233–242.

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko IA, CS Nelson, JL Marino and CN Allen (1996) The sensitivity ofN-methyl-D-aspartate receptors to lead inhibition is dependent on the receptor subunit composition.J. Pharm. Exp. Ther. 278, 15–20.

    CAS  Google Scholar 

  • Omelchenko IA, CS Nelson and CN Allen (1997) Lead inhibition ofN-methyl-D-aspartate receptors containing NR2A, NR2C and NR2D subunits.J. Pharm. Exp. Ther. 282, 1458–1464.

    CAS  Google Scholar 

  • Paoletti P, J Neyton and P Ascher (1995) Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+.Neuron 15, 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P, P Ascher and J Neyton (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors.J. Neurosci. 17, 5711–5725.

    PubMed  CAS  Google Scholar 

  • Paoletti P, F Perin-Dureau, A Fayyazuddin, A Le Goff, I Callebaut and J Neyton (2000) Molecular organization of a zinc bindingN-terminal modulatory domain in a NMDA receptor subunit.Neuron 28, 911–925.

    Article  PubMed  CAS  Google Scholar 

  • Reuhl KR, DC Rice, SG Gilbert and J Mallett (1989) Effects of chronic developmental lead exposure on monkey neuroanatomy: visual system.Toxicol. Appl. Pharmacol. 99, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Rogan WJ, KN Dietrich, JH Ware, DW Dockery, M Salganik, J Radcliffe, RL Jones, NB Ragan, JJ Chisolm Jr and GG Rhoads (2001) The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead.N. Engl. J. Med. 344, 1421–1426.

    Article  PubMed  CAS  Google Scholar 

  • Ruan DY, JT Chen, C Zhao, YZ Xu, M Wang and WF Zhao (1998) Impairment of long-term potentiation and paired-pulse facilitation in rat hippocampal dentate gyrus following developmental lead exposurein vivo.Brain Res. 806, 196–201.

    Article  PubMed  CAS  Google Scholar 

  • Schulte S, WE Muller and KD Friedberg (1995)In vitro andin vivo effects of lead on specific3H-MK-801 binding to NMDA-receptors in the brain of mice.Neurotoxicology 16, 309–317.

    PubMed  CAS  Google Scholar 

  • Simons TJ (1985) Influence of lead ions on cation permeability in human red cell ghosts.J. Membr. Biol. 84, 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Simons TJ (1986) The role of anion transport in the passive movement of lead across the human red cell membraneJ. Physiol. (Lond) 378, 287–312.

    CAS  Google Scholar 

  • Simons TJ (1993a) Lead-calcium interactions in cellular lead toxicity.Neurotoxicology 14, 77–85.

    PubMed  CAS  Google Scholar 

  • Simons TJ (1993b) Lead, transport and binding by human erythrocytesin vitro.Pflugers Arch. Pharmacol. 423, 307–313.

    Article  CAS  Google Scholar 

  • Simons TJ and G Pocock (1987) Lead enters bovine adrenal medullary cells through calcium channels.J. Neurochem. 48, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Smith QR, O Rabin and EG Chikhale (1997) Deliver of metals to brain and the role of the blood-brain barrier, In: Connor JR (Ed),Metals and Oxidative Damage in Neurological Disorders (Plenum Press, New York and London), pp. 113–130.

    Google Scholar 

  • Stewart PW, V Delbagno, J Ng, R Burright and P Donovick (1998) Subacute Pb exposure during development and unbaited tunnel maze performance in mice.Pharmacol. Biochem. Behav. 59, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Stiles KM and DC Bellinger (1993) Neuropsychological correlates of low-level lead exposure in school-age children: a prospective study.Neurotoxicol. Teratol. 15, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Struzynska I, M Walski, R Gadamski, B Dabrowska-Bouta and U Rafalowska (1997) Lead-induced abnormalities in blood-brain barrier permeability in experimental chronic toxicity.Mol. Chem. Neuropathol. 31, 207–224.

    Article  PubMed  CAS  Google Scholar 

  • Suen PC, K Wu, JL Xu, SY Lin, ES Levine and IB Black (1998) NMDA receptor subunits in the postsynaptic density of rat brain: expression and phosphorylation by endogenous protein kinases.Brain Res. Mol. Brain Res. 59, 215–228.

    Article  PubMed  CAS  Google Scholar 

  • Sui L, SY Ge, DY Ruan, JT Chen, YZ Xu and M Wang (2000a) Agerelated impairment of long-term depression in area CA1 and dentate gyrus of rat hippocampus following developmental lead exposurein vitro.Neurotoxicol. Teratol. 22, 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Sui L, DY Ruan, SY Ge and XM Meng (2000b) Two components of long-term depression are impaired by chronic lead exposure in are CA1 and dentate gyrus of rat hippocampusin vitro.Neurotoxicol. Teratol. 22, 741–749.

    Article  PubMed  CAS  Google Scholar 

  • Sun X, X Tian, JL Tomsig and JB Suszkiw (1999) Analysis of differential effects of Pb2+ on protein kinase C isozymes.Toxicol. Appl. Pharmacol. 156, 40–45.

    Article  PubMed  CAS  Google Scholar 

  • Tavakoli-Nezhad M, AJ Barron and DK Pitts (2001) Postnatal inorganic lead exposure decreases the number of spontaneously active midbrain dopamine neurons in the rat.Neurotoxicology 22, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Tiffany-Castiglion E and Y Qian (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release.Neurotoxicology 22, 577–592.

    Article  PubMed  CAS  Google Scholar 

  • Tomsig J and J Suszkiw (1990) Pb2+-induced secretion from bovine chromaffin cells: fura-2 as a probe for Pb2+.Am. J. Physiol. 259, C762-C768.

    PubMed  CAS  Google Scholar 

  • Tomsig JI and JB Suszkiw (1991) Permeation of Pb2+ through calcium channels: fura-2 measurements of voltage- and dihydropyridine-sensitive Pb2+ entry in isolated bovine chromaffin cells.Biochem. Biophys. Acta 1069, 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Tomsig JL and JB Suszkiw (1993) Intracellular mechanism of Pb2+-induced norepinephrine release from bovine chromaffin cells.Am. J. Physiol. 265, C1630-C1636.

    PubMed  CAS  Google Scholar 

  • Tomsig JL and JB Suszkiw (1995) Multisite interactions between Pb2+ and protein kinase C and its role in norepineph rine release from bovine adrenal chromaffin cells.J. Neurochem. 64, 2667–2673.

    Article  PubMed  CAS  Google Scholar 

  • Toni N, PA Buchs, I Nikonenko, CR Bron and D Muller (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite.Nature 402, 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Ujihara H and EX Albuquerque (1992) Developmental change of the inhibition by lead of NMDA-activated currents in cultured hippocampal neurons.J. Pharm. Exp. Ther. 263, 868–875.

    CAS  Google Scholar 

  • Usai C, A Barberis, L Moccagatta and C Marchetti (1999) Pathways of cadmium influx in mammalian neurons.J. Neurochem. 72, 2154–2161.

    Article  PubMed  CAS  Google Scholar 

  • Wang LY and JF MacDonald (1995) Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal neurones.J. Physiol. 486, 83–95.

    PubMed  CAS  Google Scholar 

  • Weast R (1977) Handbook of Physical Chemistry (CRC Press: Cleveland, OH), pp. F213-F214.

    Google Scholar 

  • Wenzel A, JM Fritschy, H Mohler and D Benke (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins.J. Neurochem. 68, 469–478.

    PubMed  CAS  Google Scholar 

  • Westerink RH and HP Vijverberg (2002) Ca2+-independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb2+.J. Neurochem. 80, 861–873.

    Article  PubMed  CAS  Google Scholar 

  • White RF, R Diamond, S Proctor, C Morey and H Hu (1993) Residual cognitive deficits 50 years after lead poisoning during childhood.Br. J. Ind. Med. 50, 613–622.

    PubMed  CAS  Google Scholar 

  • Widzowski DV and DA Cory-Slechta (1994) Homogeneity of regional brain lead concentrations.Neurotoxicology 15, 295–307.

    PubMed  CAS  Google Scholar 

  • Yamada Y, H Ujihara, H Sada and T Ban (1995) Pb2+ reduces the current from NMDA receptors expressed in Xenopus oocytes.FEBS Lett. 377, 390–392.

    Article  PubMed  CAS  Google Scholar 

  • Yeh GC, DW Bonhaus and JO McNamara (1990) Evidence that zinc inhibitsN-methyl-D-aspartate receptor-gated ion channel activation by noncompetitive antagonism of glycine binding.Mol. Pharmacol. 38, 14–19.

    PubMed  CAS  Google Scholar 

  • Yi EY and DK Lim (1998) Effects of chronic lead exposure on glutamate release and uptake in cerebellar cells of rat pups.Arch. Pharm. Res. 21, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Zawia NH, T Crumpton, M Brydie, GR Reddy and M Razmiafshari (2000) Disruption of the zinc finger domain: a common target that underlies many of the effects of lead.Neurotoxicology 21, 1069–1080.

    PubMed  CAS  Google Scholar 

  • Zhang XY, AP Liu, DY Ruan and J Liu (2002) Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by digoxigenin-labeled in situ hybridization histochemistry.,Neurotoxicol. Teratol. 24, 149–160.

    Article  PubMed  Google Scholar 

  • Zhao WF, DY Ruan, YZ Xu, JT Chen, M Wang and SY Ge (1999) The effects of chronic lead exposure on long-term depression in area CA1 and dentate gyrus of rat hippocampusin vitro.Brain Res. 818, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Zheng W (2001) Toxicology of choroid, plexus: special reference to metal-induced neurotoxicities.Microsc. Res. Tech. 52, 89–103.

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, WS Blaner and Q Zhao (1999) Inhibition by lead of production and secretion of transthyretin in the choroid plexus: its relation to thyroxine transport at blood-CSF barrier.Toxicol. Appl. Pharmacol. 155, 24–31.

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, YM Lu, GY Lu, Q Zhao, O Cheung and WS Blaner (2001) Transthyretin, thyroxine, and retinol-binding protein in human cerebrospinal fluid: effect of lead exposure.Toxicol. Sci. 61, 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, H Shen, WS Blaner, Q Zhao, X Ren and JH Graziano (1996) Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus.Toxicol. Appl. Pharmacol. 139, 445–450.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Marchetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, C. Molecular targets of lead in brain neurotoxicity. neurotox res 5, 221–235 (2003). https://doi.org/10.1007/BF03033142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033142

Keywords

Navigation