Skip to main content
Log in

A gaseous plant hormone ethylene: the signaling pathway

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Phytohormone ethylene has profound effects on growth and development in plants. Molecular genetic studies usingArabidopsis have defined a linear pathway for ethylene signal transduction leading from initial hormone perception to changes in gene expression. Ethylene is perceived by a family of ethylene receptor complex at endoplasmic reticulum (ER), which negatively regulates the ethylene response. Ethylene binding inactivates the receptors and represses the Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) that actively represses ethylene response pathway in the absence of ethylene. Consequently, the ETHYLENE INSENSITIVE2 (EIN2), a membrane protein with similarities to Nramp metal ion transporter becomes activated and positively regulates the ethylene signaling pathway by transmitting the signal into the nucleus. Finally, the nuclear signal initiates the transcriptional cascade via the transcription factors ETHYLENE INSENSITIV3/ETHYLENE INSENSITIVE3-LIKE proteins (EIN3/EILs). This review will summarize the up-to-date understanding of ethylene signal transduction, in aiming to illustrate how challenges in hormone biology have been resolved through the power of molecular genetics and to provide references for interested readers searching for further information.Keywords: Arabidopsis, ethylene, hormone, signaling

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in Plant Biology. Ed 2, Academic Press, New York

    Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses inArabidopsis. Science284: 2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants inArabidopsis. Proc Natl Acad Sci USA 100: 2992–2997

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin N, Serizet C, Costi F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell12: 1103–1115

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville CR, Kende H (1988) Insensitiv-ity to ethylene conferred by a dominant mutation inArabidopsis thaliana. Science241: 1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Buck V, Quinn J, Soto Pino T, Martin H, Saldanha J, Makino K, Morgan BA, Millar JB (2001) Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol Biol Cell12: 407–419

    PubMed  CAS  Google Scholar 

  • Burg SP, Burg EA (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol42: 144–152

    Article  PubMed  CAS  Google Scholar 

  • Burg SP, Stolwijk JAJ (1959) A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance. J Biochem Microbiol Technol Engr1: 245–259

    Article  CAS  Google Scholar 

  • Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: Insights into a molecular machine. Nat Rev Mol Cell Biol5: 739–751

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993)Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science262: 539–544

    Article  PubMed  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway inArabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell89: 1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Randlett MD, Findeil JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum ofArabidopsis. J Biol Chem277: 19861–19866

    Article  PubMed  CAS  Google Scholar 

  • Clark KL, Larsen PB, Wang X, Chang C (1998) Association of theArabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA95: 5401–5406

    Article  PubMed  CAS  Google Scholar 

  • de Paepe A, Vuylsteke M, van Hummelen P, Zabeau M, van der Straeten D (2004) Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene inArabidopsis. Plant J39: 537–559

    Article  PubMed  Google Scholar 

  • Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol15: 435–467

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature435: 441–445

    Article  PubMed  CAS  Google Scholar 

  • Ecker JR (2004) Reentry of the ethylene MPK6 module. Plant Cell16:3169–3173

    Article  CAS  Google Scholar 

  • Fujita H, Syono K (1996) Genetic analysis of the effects of polar auxin transport inhibitors on root growth inArabidopsis thaliana. Plant Cell Physiol37: 1094–1101

    PubMed  CAS  Google Scholar 

  • Fujiwara K, Toh-e A (2002) Ethylene functions in the moss,Physcomitrella patens. Poster Abstract at Moss2002 Annual Meeting

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004)Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA101: 6803–6808

    Article  PubMed  CAS  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor fromArabidopsis. Proc Natl Acad Sci USA95: 7825–7829

    Article  PubMed  CAS  Google Scholar 

  • Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1: Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol128: 1428–1438

    Article  PubMed  CAS  Google Scholar 

  • Gane R (1934) Production of ethylene by some fruits. Nature134: 1008

    Article  CAS  Google Scholar 

  • Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum ofArabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem278: 34725–34732

    Article  PubMed  CAS  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway inArabidopsis. Plant Cell12: 1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2) dependent proteolysis of EIN3 transcriptionfactor. Cell115: 667–677

    Article  PubMed  CAS  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response ofArabidopsis to identify ethylene related mutants. Plant Cell2: 513–523

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-func-tion mutants in theArabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell15: 2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling inArabidopsis. Cell97: 383–393

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred byArabidopsis ERS gene. Science 269: 1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family inArabidopsis thaliana. Cell94: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family inArabidopsis. Plant Cell10: 1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling inArabidopsis. Plant J33: 221–233

    Article  PubMed  CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol44: 283–307

    Article  CAS  Google Scholar 

  • Kende H (1998) Plant biology and the Nobel Prize. Science282: 627

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway inArabidopsis, encodes a member of the raf family of protein kinases. Cell72: 427–441

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Chang C (2001) TheArabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol125: 1061–1073

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Jin ES, Kim WT (1999) Inhibition of auxin-induced ethylene production by salicylic acid in mung bean hypocotyls. J Plant Biol42: 1–7

    Article  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induced ethylene biosynthesis inArabidopsis. Plant Cell16: 3386–3399

    Article  PubMed  CAS  Google Scholar 

  • Menke FL, van Pelt JA, Peterse CM, Klessig DF (2004) Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance inArabidopsis. Plant Cell16: 897–907

    Article  PubMed  CAS  Google Scholar 

  • Oh SA, Park JH, Lee Gl, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence inArabidopsis thaliana. Plant J12: 527–535

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell7:173–182

    Article  PubMed  CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman R, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5’—>3’ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA103: 13286–13293

    Article  PubMed  CAS  Google Scholar 

  • O’Malley RC, Rodriguez Fl, Esch JJ, Binder BM, O’Donnell V, Klee HJ, Bleecker AB (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members fromArabidopsis and tomato. Plant J41: 651–659

    Article  PubMed  CAS  Google Scholar 

  • Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J22: 1282–1288

    Article  PubMed  CAS  Google Scholar 

  • Park D, Lee JH, Joo S, Kim WT (2001) Structure and ethylene-induced expression of the ACC oxidase gene in mung bean (Vigna radiata L.). J Plant Biol44: 17–26

    Article  CAS  Google Scholar 

  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component ”osmosensor. Cell86: 865–875

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by twoArabidopsis F box proteins: EBF1 and EBF2. Cell115: 679–689

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschik P (2006) The exoribonuclease XRN4 is a component of the ethylene response pathway inArabidopsis. Plant Cell18: 3047–3057

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Hall BP, Gao Z, Schaller GE (2007) A strong constitutive eth-ylene-response phenotype conferred onArabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol7: 1–15

    Article  CAS  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function inArabidopsis. Proc Natl Acad Sci USA103: 7917–7922

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez Fl, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 fromArabidopsis. Science283: 996–998

    Article  PubMed  CAS  Google Scholar 

  • Rohwer F, Bopp M (1985) Ethylene synthesis in moss protonema. J Plant Physiol117: 331–338

    CAS  Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction inArabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway. Genetics139: 1393–1409

    PubMed  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QC, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling inArâ bidopsis. Proc Natl Acad Sci USA95: 5812–5817

    Article  PubMed  CAS  Google Scholar 

  • Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing theArabidopsis ETR1 gene. Science270: 1809–1811

    Article  PubMed  CAS  Google Scholar 

  • Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB (1995) The ethylene response mediator ETR1 fromArabidopsis forms a disulfide-linked dimer. J Biol Chem270: 12526–12530

    Article  PubMed  CAS  Google Scholar 

  • Shieh JC, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JB (1997) The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev11: 1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETH-YLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev12: 3703–3714

    Article  PubMed  CAS  Google Scholar 

  • Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA inArabidopsis and its substrates include selected miRNA targets. Mol Cell15: 173–183

    Article  PubMed  CAS  Google Scholar 

  • Su W, Howell SH (1992) A single genetic locus,ckr1, definesArabidopsis mutants in which root growth is resistant to low concentrations of cytokinin. Plant Physiol99: 1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Trentmann SM (2000) ERN1, a novel ethylene-regulated nuclear protein ofArabidopsis. Plant Mol Biol44: 11–25

    Article  PubMed  CAS  Google Scholar 

  • van der Staeten D, Djudzman A, van Caeneghem W, Smalle J, van Montagu M (1993) Genetic and physiological analysis of a new locus inArabidopsis that confers resistance to 1-aminocy-clopropane-1-carboxylic acid and ethylene and specifically affects the ethylene signal transduction pathway. Plant Physiol102:401–408

    Google Scholar 

  • Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histi-dine kinase activity of the transmitter domain of the ETR1 ethylene receptor fromArabidopsis is not required for signal transmission. Proc Natl Acad Sci USA100: 352–357

    Article  PubMed  CAS  Google Scholar 

  • Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell12: 443–455

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signaling in plants. Nature425: 521–525

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol35: 155–189

    Article  CAS  Google Scholar 

  • Zegzouti H, Joenes B, Frasse P, Marty C, Maitre B, Latch A, Pech JC, Bouzayen M (1999) Ethylene-regulated gene expression in tomato fruit: Characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. Plant J18:589–600

    Article  PubMed  CAS  Google Scholar 

  • Zhao XC, Qu X, Mathews DE, Schaller GE (2002) Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 fromArabidopsis. Plant Physiol130: 1983–1991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunjoo Joo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, S., Kim, W.T. A gaseous plant hormone ethylene: the signaling pathway. J. Plant Biol. 50, 109–116 (2007). https://doi.org/10.1007/BF03030618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030618

Keywords

Navigation