Skip to main content
Log in

Control curves and knot insertion for trigonometric splines

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We introduce control curves for trigonometric splines and show that they have properties similar to those for classical polynomial splines. In particular, we discuss knot insertion algorithms, and show that as more and more knots are inserted into a trigonometric spline, the associated control curves converge to the spline. In addition, we establish a convex-hull property and a variation-diminishing result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alfeld, M. Neamtu and L.L. Schumaker, Circular Bernstein-Brzier polynomials, in:Mathematical Methods for Curves and Surfaces, eds. M. Dæhlen, T. Lyche and L.L. Schumaker (Vanderbilt University Press, Nashville, 1995) pp. 11–20.

    Google Scholar 

  2. W. Boehm, Inserting new knots into B-spline curves, Comp. Aided Design 12 (1980) 199–201.

    Article  Google Scholar 

  3. C. de Boor,A Practical Guide to Splines (Springer, New York, 1978).

    MATH  Google Scholar 

  4. E. Cohen, T. Lyche and R. Riesenfeld, DiscreteB-splines and subdivision techniques in computer-aided geometric design and computer graphics, Comp. Graphics Image Proc. 14 (1980) 87-111.

  5. E. Cohen and L.L. Schumaker, Rates of convergence of control polygons, Comp. Aided Geom. Design 2 (1985) 229–235.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Dahmen, Subdivision algorithms converge quadratically, J. Comp. Appl. Math. 16 (1986) 145–158.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Farin,Curves and Surfaces for Computer Aided Geometric Design (Academic Press, 1988).

  8. T.N.T. Goodman and S.L. Lee, Interpolatory and variation-diminishing properties of generalized B-splines, Proc. Royal Soc. Edinburgh 96A (1984) 249-259.

  9. D. Gonsor and M. Neamtu, Non-polynomial polar forms, in:Curves and Surfaces in Geometric Design, eds. P.-J Laurent, A. Le Méhauté and L.L. Schumaker, (AKPeters, Wellesley, MA, 1994) pp. 193–200.

    Google Scholar 

  10. J. Hoschek and D. Lasser,Computer Aided Geometric Designs (AKPeters, Wellesley, MA, 1993).

  11. P.E. Koch, Jackson-type estimates for trigonometric splines, in:Industrial Mathematics Week, Trondheim, Department of Mathematical Sciences, Norwegian Institute of Technology (NTH), Trondheim (1992) pp. 117-124.

  12. P.E. Koch and T. Lyche, Bounds for the error in trigonometric Hermite interpolation, in: Quantitative Approximation, eds. R. DeVore and K. Scherer (Academic Press, New York, 1980) pp. 185–196.

    Google Scholar 

  13. P.E. Koch, T. Lyche and L.L. Schumaker, Quasi-interpolation with trigonometric splines, preprint (1994).

  14. J.M. Lane and R.F. Riesenfeld, A geometric proof for the variation diminishing property of B-spline approximation, J. Approx. Theory 37 (1983) 1–4.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Lyche, A recurrence relation for Chebyshevian B-splines, Constr. Approx. 1 (1985) 155–173.

    MATH  MathSciNet  Google Scholar 

  16. T. Lyche, Discrete B-splines and conversion problems, in: Computation of Curves and Surfaces, eds. W. Dahmen, M. Gasca and C. Micchelli (Kluwer, Dordrecht, 1990) pp. 117–134.

    Google Scholar 

  17. T. Lyche and L.L. Schumaker, L-spline wavelets, in:Wavelets: Theory, Algorithms, and Applications, eds. C. Chui, L. Montefusco and L. Puccio (Academic Press, New York, 1994) pp. 197–212.

    Google Scholar 

  18. T. Lyche and R. Winther, A stable recurrence relation for trigonometric B-splines, J. Approx. Theory 25 (1979) 266–279.

    Article  MATH  MathSciNet  Google Scholar 

  19. I.J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech. 13 (1964) 795–825.

    MATH  MathSciNet  Google Scholar 

  20. L.L. Schumaker,Spline Functions: Basic Theory (Interscience, New York, 1991; reprinted by Krieger, Malabar, Florida, 1993).

  21. L.L. Schumaker, On recursions for generalized splines, J. Approx. Theory 36 (1982) 16–31.

    Article  MATH  MathSciNet  Google Scholar 

  22. L.L. Schumaker, On hyperbolic splines, J. Approx. Theory 38 (1983) 144–166.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lyche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, P.E., Lyche, T., Neamtu, M. et al. Control curves and knot insertion for trigonometric splines. Adv Comput Math 3, 405–424 (1995). https://doi.org/10.1007/BF03028369

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03028369

Keywords

AMS subject classification

Navigation