Skip to main content
Log in

Three-dimensional Monte-Carlo computer simulation of grain growth in electro-plated pure Ni

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A Monte-Carlo computer simulation code was developed to study grain growth characteristics during thin film deposition. The simulation algorithm was based on the minimization of the sum of the anisotropic surface energy and grain boundary energy. The average grain size and the surface roughness of the plated layer increased rapidly with the thickness of deposition, but the rate of the increase diminished with large thickness. In the simulation, it was found that the surface energy term dominated over the grain boundary energy term and consequently a strong {111} fiber texture was predicted. To verify the results of the computer simulation, an experiment was conducted to electro-deposit pure Ni on a Cu substrate. The thickness dependence of the microstructure, particularly roughness and grain size, was consistent with the prediction by the simulation. The roughness increased with thickness in the initial period but became saturated in the later period. Increasing the current density during electro-plating or increasing the deposition rate in the computer simulation randomized the texture and refined the grain size, which was attributed to insufficient diffusion at the specimen surface. In the experiment a pronounced {100} texture was found due to hydrogen adsorption. Minimization of hydrogen adsorption by strong agitation or by addition of boric acid decreased the intensity of the {100} texture substantially, confirming the rationale based on the hydrogen adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Glocker and E. Kaupp,Z. Physik. 24, 121 (1924).

    Article  ADS  CAS  Google Scholar 

  2. G. Tammann and M. Straumanis,Z. Anorg. Allgem. Chem. 175, 131 (1928).

    Article  CAS  Google Scholar 

  3. W. A. Wood,Proc. Phys. Soc. London 43, 138 (1931).

    Article  ADS  CAS  Google Scholar 

  4. G. P. Thompson,Proc. Phys. Soc. London A 133, 1 (1931).

    Article  ADS  Google Scholar 

  5. L. B. Hunt,J. Phys. Chem. 36, 1006 (1932).

    Article  CAS  Google Scholar 

  6. A. W. Hothersall,Engineering 140, 127 (1935).

    CAS  Google Scholar 

  7. G. I. Finch, A. G. Quarrell, and H. Wilman,Trans. Faraday Soc. 31, 1051 (1935).

    Article  CAS  Google Scholar 

  8. G. I. Finch and C. H. Sun,Trans. Faraday Soc. 32, 852 (1936).

    Article  CAS  Google Scholar 

  9. G. I. Finch and A. L. Willams,Trans. Faraday Soc. 33, 564 (1937).

    Article  CAS  Google Scholar 

  10. G. I. Finch, H. Wilman, and L. Yang,Discussions Faraday Soc. 1, 144 (1947).

    Google Scholar 

  11. G. I. Finch,Z. Elektrochem. 54, 457 (1950).

    CAS  Google Scholar 

  12. R. Carel, C. V. Thompson, and H. J. Frost,Acta mater. 44, 2479 (1996).

    Article  CAS  Google Scholar 

  13. D. Y. Li and J. A. Szpunar,Electrochem. Acta 42, 37 (1997).

    Article  CAS  Google Scholar 

  14. H. Li, F. Czerwinski, and J. A. Szpunar,Nanostruct. Mater. 9, 673 (1997).

    Article  CAS  Google Scholar 

  15. Paritosh, D. J. Srolovitz, C. C. Battaile, X. Li, and J. E. Butler,Acta mater. 47, 2269 (1999).

    Article  CAS  Google Scholar 

  16. X. W. Zhou and H. N. G. Wadley,Surf. Sci. 431, 42 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Y. G. Yang, X. W. Zhou, R. A. Johnson, and H. N. G. Wadley,Acta mater. 49, 3321 (2001).

    Article  CAS  Google Scholar 

  18. W. Helin, L. Zuli, and Y. Kailun,Vacuum 57, 87 (2000).

    Article  Google Scholar 

  19. A. V. Amorsolo, P. D. Funkenbusch, and A. M. Kadin,Mater. Sci. Eng. B 57, 186 (1999).

    Article  Google Scholar 

  20. M. Santos, W. Cavalcanti, A. A. Pasa, and W. Figueiredo,Physica A 308, 313 (2002).

    Article  ADS  CAS  Google Scholar 

  21. F. Y. Wu,Rev. Mod. Phys. 54, 235 (1982).

    Article  ADS  Google Scholar 

  22. K. Binder,J. Statis. Phys. 24, 69 (1981).

    Article  ADS  Google Scholar 

  23. H. N. Lee, S. T. Chang, H. S. Ryoo, and S. K. Hwang,Metals and Materials 4, 67 (1998).

    Article  CAS  Google Scholar 

  24. W. T. Read and W. Shockley,Phys. Rev. 78, 275 (1950).

    Article  MATH  ADS  CAS  Google Scholar 

  25. G. H. Bishop and B. Chalmers,Scripta metall. 2, 133 (1968).

    Article  Google Scholar 

  26. P. H. Pumphrey,Scripta metall. 6, 107 (1972).

    Article  CAS  Google Scholar 

  27. S. Ranganathan,Acta Crystallogr. 21, 197 (1966).

    Article  CAS  Google Scholar 

  28. N. Ono, K. Kimura, and T. Watanabe,Acta mater. 47, 1007 (1999).

    Article  CAS  Google Scholar 

  29. T. Schober and R. W. Balluffi,Phill. Mag. 21, 109 (1970).

    Article  ADS  Google Scholar 

  30. S. G. Wang, E. K. Tian, and C. W. Lung,J. Phys. Chem. Solids 61, 1295 (2000).

    Article  ADS  CAS  Google Scholar 

  31. J. H. Alonso and N. H. March,Electrons in Metals and Alloys, p. 436, Academic Press, London (1989).

    Google Scholar 

  32. M. P. Anderson, D. J. Srolovitz, and P. S. Sahni,Acta metall. 32, 783 (1984).

    Article  CAS  Google Scholar 

  33. A. D. Rollett, D. J. Srolovitz, and M. P. Anderson,Acta metall. 37, 1227 (1989).

    Article  CAS  Google Scholar 

  34. C. S. Barrett and T. S. Massalski,Structure of Metals, 3rd ed., McGraw Hill Book Co. (1966).

  35. E. Raub and K. Müller,Fundamentals of Metal Deposition, Elsevier Publishing Co., Amsterdam (1967).

    Google Scholar 

  36. N. A. Pngarov,J. Electroanal. Chem. 9, 70 (1965).

    Article  Google Scholar 

  37. G. Maurin,Growth and Properties of Metal Clusters (ed., J. Bourdon), Elsevier, Amsterdam (1980).

    Google Scholar 

  38. N. Zech and D. Landolt,Electrochem. Acta 45, 3461 (2000).

    Article  CAS  Google Scholar 

  39. D. Y. Li and J. A. Szpunar,Electrochem. Acta 42, 47 (1997).

    Article  CAS  Google Scholar 

  40. F. Ebrahimi and A. J. LiscanoMater. Sci. Eng. A 301, 23 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Hwang.

Additional information

This article is based on a presentation made in the 2003 Korea-Japan symposium on the “Current Issues on Phase Transformations”, held at Marriott Hotel, Busan, Korea, November 21, 2003, which was organized by the Phase Transformation Committee of the Korean Institute of Metals and Materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhm, H.S., Hwang, S.K. Three-dimensional Monte-Carlo computer simulation of grain growth in electro-plated pure Ni. Met. Mater. Int. 10, 113–121 (2004). https://doi.org/10.1007/BF03027314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027314

Keywords

Navigation