Skip to main content
Log in

A Survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The Landau-Lifshitz (LL)equation of micromagnetism governs rich variety of the evolution of magnetization patterns in ferromagnetic media. This is due to the complexity of physical quantities appearing in the LL equation. This complexity causes also an interesting mathematical properties of the LL equation: nonlocal character for some quantities,nonconvex side-constraints, strongly nonlinear terms. These effects influence also the numerical approximations. In this work, recent developments on the approximation of weak solutions, together with the overview of well-known methods for strong solutions,are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kružík, M. and Prohl, A.(2006) Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism.SIAM Review,48, 439–483.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertotti, G. (1998)Hysteresis in Magnetism. Academic Press.

  3. Landau, L. and Lifshitz, E. (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies.Phys. Z. Sowjetunion,8, 153–169.

    MATH  Google Scholar 

  4. Gilbert, T. (1955) A Lagrangian formulation of gyromagnetic equation of the magnetization field.Phys. Rev.,100, 1243–1255.

    Google Scholar 

  5. d’Aquino, M., Serpico, C., and Miano, G. (2005) Geometrical integration of Landau-Lifshitz-Gilbert equation based on the mid-point rule.Journal of Computational Physics,209, 730–753.

    Article  MATH  MathSciNet  Google Scholar 

  6. Prohl, A. (2001)Computational Micromagnetism. Advances in Numerical Mathematics, B.G. Teubner.

  7. Cimrák, I. (2005) Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field.IMA J. Numer. Anal.,25, 611–634.

    Article  MATH  MathSciNet  Google Scholar 

  8. Podio-Guidugli, P. (2001) On dissipation mechanisms in micromagnetics.The European Physical Journal B,19, 417–424.

    Article  Google Scholar 

  9. Monk, P. and Vacus, O. (2001) Accurate discretization of a non-linear micromagnetic problem.Comput. Methods Appl. Mech. Engrg.,190, 5243–5269.

    Article  MATH  MathSciNet  Google Scholar 

  10. Baňas, L., Bartels, S., and Prohl, A. A convergent implicit discretization of the Maxwell-Landau-Lifshitz-Gilbert equation.Preprint,http://na.unituebingen.de/pub/prohl/papers/mllg.pdf.

  11. Bartels, S. and Prohl, A. (2006) Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation.SIAM J. Numer. Anal.,44, 1405–1419.

    Article  MATH  MathSciNet  Google Scholar 

  12. Brown, W. (1963) Thermal fluctuations of a single domain particle.Phys. Rev.,130, 1677–1686.

    Article  Google Scholar 

  13. Kubo, R., Toda, M., and Hashitsume, N. (1991)Nonequilibrium statistical mechanics, vol.2 of Statistical Physics. Springer.

  14. Tsiantos, V.D., Suess, D., Scholz, W., Schreft, T., and Fidler, J. Effect of spatial correlation length in Langevin micromagnetic simulations.J. Magn. Magn. Mater., in press.

  15. Garcia-Palacios, L. and Lazaro, F. J. (1998) Langevin-dynamics study of the dynamical properties of small magnetic particles.Phys. Rev. B,58, 14937–14958.

    Article  Google Scholar 

  16. Scholz, W., Schrefl, T., and Fidler, J. (2001) Micromagnetic simulation of thermally activated switching in fine particles.J. Magn. Magn. Mater.,233, 296–304.

    Article  Google Scholar 

  17. Cheng, X.Z., Jalil, M. B. A., Lee, H.K., and Okabe, Y. (2006) Mapping the Monte-Carlo Scheme to Langevin Dynamics: A Fokker-Planck Approach.Phys. Rev. Lett.,96, 067208.

    Article  Google Scholar 

  18. Baňas, L., Prohl, A., and Slodiĉka, M. Modeling od thermally assisted magnetodynamics. Preprint, http://na.unituebingen.de/pub/prohl/papers/thermagA5.pdf.

  19. Cimrák, I. and Melicher, V. Determination of precession and dissipation parameters in the micromagnetics. Preprint.

  20. Cimrák, I. and Melicher, V. (2007) Sensitivity analysis framework for micromagnetism with application to optimal shape design of MRAM memories.Inverse Problems,23, 563–588.

    Article  MATH  MathSciNet  Google Scholar 

  21. Cimrák, I. and Melicher, V. (2006) The Landau-Lifshitz model for shape optimization of MRAM memories.PAMM 6, 23–26.

    Article  Google Scholar 

  22. Tai, X. and Chan, T. (2004) A survey on multipole level set methods with applications for identifying piecewise constant functions.International Journal of Numerical Analysis and Modeling,1, 25–47.

    MATH  MathSciNet  Google Scholar 

  23. Melicher, V., Cimrák, I., and Van Keer, R. Level Set Method for optimal shape design of MRAM core. Micromagnetic approach.Physica B, accepted.

  24. Carbou, G. and Fabrie, P. (2001) Regular solutions for Landau-Lifshitz Equation in a bounded domain.Differential Integral Equations,14, 213–229.

    MATH  MathSciNet  Google Scholar 

  25. Guo, B. and Ding, S. (2001) Neumann problem for the Landau-Lifshitz-Maxwell system in two dimensions.Chin. Ann.Math., Ser. B,22, 529–540.

    Article  MATH  MathSciNet  Google Scholar 

  26. Lewis, D. and Nigam, N. (2003) Geometric integration on spheres and some interesting applications.J. Comput. Appl. Math.,151, 141–170.

    Article  MATH  MathSciNet  Google Scholar 

  27. E, W. and Wang, X.-P (2000) Numerical methods for the Landau-Lifshitz equation.SIAM J. Numer. Anal.,38, 1647–1665.

    Article  MATH  MathSciNet  Google Scholar 

  28. Krishnaprasad, P. and Tan, X. (2001) Cayley transforms in micromagnetics.Physica B,306, 195–199.

    Article  Google Scholar 

  29. Lewis, D. and Nigam, N. (2000), A geometric integration algorithm with applications to micromagnetics. Technical Report 1721, IMA preprint series.

  30. Monk, P. and Vacus, O. (1999) Error estimates for a numerical scheme for ferromagnetic problems.SIAM J. Numer. Anal.,36, 696–718.

    Article  MathSciNet  Google Scholar 

  31. Serpico, C., Mayergoyz, I., and Bertotti, G. (2001) Numerical technique for integration of the Landau-Lifshitz equation.J. of Appl.Phys.,89, 6991–6993.

    Article  Google Scholar 

  32. Cimrák, I. (2007) Error analysis of numerical scheme for 3d Maxwell-Landau-Lifshitz system. Mathematical Methods in the Applied Sciences, accepted for publication.

  33. Cimrák, I. Existence, regularity and local uniqueness of the solutions to the Maxwell-Landau-Lifshitz system in three dimensions. Journal of Mathematical Analysis and Applications, to appear.

  34. Cimrák, I.(2007), Regularity properties of the solutions to the 3d Maxwell-Landau-Lifshitz system in weighted sobolev spaces. doi: 10.1016/j.cam.2006.03.044.

  35. Alouges, F. and Soyeur, A. (1992) On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness.Nonlinear Anal.,18, 1071–1094.

    Article  MATH  MathSciNet  Google Scholar 

  36. Guo, B. and Hong, M. (1993) The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps.Calc. Var.,1, 311–334.

    Article  MATH  MathSciNet  Google Scholar 

  37. Slodička, M. and Cimrák, I. (2003) Numerical study of nonlinear ferromagnetic materials.Appl. Numer. Math.,46, 95–111.

    MATH  Google Scholar 

  38. Cimrák, I. and Slodička, M. (2004) An iterative approximation scheme for the Landau-Lifshitz-Gilbert equation.J. Comput. Appl. Math.,169, 17–32.

    Article  MATH  MathSciNet  Google Scholar 

  39. Cimrák, I. and Slodička, M. (2004) Optimal convergence rate for Maxwell-Landau-Lifshitz system.Physica B,343, 236–240.

    Article  Google Scholar 

  40. Slodička, M. and Baňas, L. (2004) A numerical scheme for a Maxwell-Landau-Lifshitz-Gilbert System.Appl. Math. Comput.,158, 79–99.

    Article  MATH  MathSciNet  Google Scholar 

  41. Slodička, M. and Cimrák, I. (2004) Improved error estimates for a Maxwell-Landau-Lifschitz system.PAMM,4, 71–74.

    Article  Google Scholar 

  42. Alouges, F. and Jaisson, P. (2006) Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism.Math. Models Methods Appl. Sci.,16, 299–316.

    Article  MATH  MathSciNet  Google Scholar 

  43. Bartels, S., Ko, J., and Prohl, A. Numerical approximation of the Landau-Lifshitz-Gilbert equation and finite time blow-up of weak solutions. Preprint.

  44. Barret, J., Bartels, X., S. Feng, and Prohl, A. A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J. Numer. Anal., accepted.

  45. Bartels, S. (2006) Constraint preserving, inexact solution of implicit discretizations of Landau-Lifshitz-Gilbert equations and consequences for convergence.PAMM,6, 19–22.

    Article  Google Scholar 

  46. Bartels, S. and Prohl, A. Fully practical, constraint preserving, implicit approximation of harmonic map heat flow into spheres. Preprint.

  47. Bartels, S. (2004) Stability and convergence of finite element approximation schemes for harmonic maps.SIAM J. Numer. Anal.,43, 220–238.

    Article  MathSciNet  Google Scholar 

  48. Bartels, S., Prohl, A., and Lubich, C. Convergent discretization of heat and wave map flows to spheres using approximate discrete lagrange multipliers. Preprint.

  49. Bartels, S. and Prohl, A. Convergence of an implicit, constraint preserving finite element discretization of p-harmonic heat flow into spheres. Preprint.

  50. Serpico, C., Mayergoyz, I., Bertotti, G., d’Aquino, M., and Bonin, R. (2007) Generalized Landau-Lifshitz-Gilbert equation for uniformly magnetized bodies. Physica B, doi:10.1016/j.physb.2007.08.029.

  51. Bertotti, G., Serpico, C., and Mayergoyz, I. (2001) Nonlinear magnetization dynamics under circularly polarized field.Phys. Rev. Lett.,86, 724–727.

    Article  Google Scholar 

  52. Cimrák, I. Convergence result for the constraint preserving mid-point scheme for micromagnetics. Preprint.

  53. Monk, P. (2003) Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation, Oxford University Press.

  54. Carbou, G. and Fabrie, P. (2001) Time average in micromagnetism.J. Differential Equations,147, 383–409.

    Article  MathSciNet  Google Scholar 

  55. Baňas, L’.(2005) Numerical methods for the Landau-Lifshitz-Gilbert equation. Li, Z.,Vulkov, L., and Wasniewski, J. (eds.),Numerical Analysis and Its Applications: Third International Conference, NAA 2004, Rousse, Bulgaria, vol.3401, p.158, Springer.

  56. Mayergoyz, I., Serpico, C., and Shimizu, Y. (2000) Coupling between eddy currents and Landau-Lifshitz dynamics.J. of Appl.Phys.,87, 5529–5531.

    Article  Google Scholar 

  57. webpage address: http://www.ctcms.nist.gov/~rdm/mumag.org.html.

  58. Baňas, L’ (2005) Adaptive Methods for Dynamical Micromagnetics. Bermúdez de Castro, A., Gómez, D., Quintela, P., and Salgado, P. (eds.), Proceedings of ENUMATH 2005, Santiago de Compostela, Spain, Springer.

  59. Baňas, L’. (2004) On dynamical Micromagnetism with Magnetostriction. Ghent University, Belgium, PhD thesis, http://cage.ugent.be/~lubo/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Cimrák.

Additional information

Author is supported by the Fund for Scientific Research - Flanders FWO (Belgium).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimrák, I. A Survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism. ARCO 15, 1–37 (2007). https://doi.org/10.1007/BF03024947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03024947

Keywords

Navigation