Skip to main content
Log in

Effect of carrier injection into MESFET substrates : comparison of MESFET on a semi-insulating buffer, MESFET on a P substrate, and substrate-less MESFET

Effet de l’injection de porteurs dans les substrats de mesfet. comparaison des mesfet À couche tampon en silicium, À substrat de type p ou sans substrat

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Abstract

The carrier injection from the active-layer of the submicron-gate-lengthMesfet into the buffer-layer, or substrate in general, is studied by means of a two-dimensional computer simulation in which the energy conservation equation is simultaneously solved with the carrier conservation equation and Poisson’s equation. The mobility, electron temperature and energy relaxation time are treated as energy dependent parameters. This model is capable of simulating the non-stationary conditions associated with the submicron-gate-length devices. The effect of the carrier injection on the I-V characteristics as well as on the small-signal parameters is investigated by simulating twoMesfet structures; the first is aMesfet on a perfect buffer-layer while the second is a symmetricalMesfet which has no substrate. It is found out that the drain current is increased by the carrier injection, whereas the transconductance is reduced due to the increase of the device dynamic range. TheMesfet with an interfacial potential barrier is also simulated. It exhibits characteristics intermediate between those of the other two devices.

Résumé

L’injection de porteurs à partir de la couche active d’un transistor à effet de champ à barrière de Schottky (Mesfet) à longueur de grille submicrométrique dans la couche tampon ou dans le substrat, est étudiée à l’aide d’une simulation numérique bidimensionnelle dans laquelle l’équation de conservation de l’énergie, l’équation de la conservation des porteurs et l’équation de Poisson sont résolues simultanément. La mobilité et la température électroniques ainsi que le temps de relaxation de l’énergie sont traités en tant que paramètres indépendants. Ce modèle permet de simuler les conditions non stationnaires associées aux dispositifs à grilles submicroniques. L’effet de l’injection de porteurs sur les caractéristiques courant-tension ainsi que sur les paramètres en régime de petit signal est étudié en simulation sur deux structures : unMesfet sur couche tampon parfaite et unMesfet symétrique dépourvu de substrat. Le courant de drain est augmenté par l’injection de porteurs, tandis que la transconductance est réduite du fait de l’augmentation de la portée dynamique du dispositif. La simulation duMesfet à barrière de potentiel interfaciale montre que ce dispositif a des caractéristiques intermédiaires à celles des deux autres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cgs :

Gate-to-source capacitance

E :

Electric field

f t :

Current-gain-cutoff frequency

g d :

Output conductance

g m :

Transconductance

J :

Conduction current density (drift + diffusion)

K:

Boltzmann constant

n :

Free electron density

N a :

Acceptor density

N d :

Donor density

q :

Electron charge

t :

Time

T(e) :

Electron temperature (energy dependant)

v :

Electron velocity

Vbi :

Built-in potential of the Schottky junction

Vds :

Drain-to-source voltage

V g :

The external voltage applied to the gate

V p :

The pinch-off voltage

ε:

Permittivity

e :

Average electron energy (kinetic + potential)

τ(e) :

Energy relaxation time (energy dependant)

μ(e) :

Electron mobility (energy dependant)

References

  1. Salmer (G.), Lefebvre (M.), Heliodore (F.), El-Sayed (O. L.), Isamil (K.), El-Ghazaly (S.). Substrate effects in submicronic gate low noise GaAs MesFet’s. Gallium arsenide and related compounds.Inst. Phys. Conf. Ser. (1984), n° 74, pp. 503–507.

  2. Yokoyama (N.), Shibatomi (A.), Ohkawa (S.), Fukuta (M.), Ishikawa (H.). Electrical properties of the interface between an N-GaAs epitaxial layer and a Cr-doped substrate. Gallium arsenide and related compounds.Inst. Phys. Conf. Ser., London (1977), n° 33b, pp. 201–209.

  3. Kitahara (K.), Nakai (K.), Shibatomi (A.), Ohkawa (S.). Electrical and photoelectronic properties of Cr-doped semi-insulating GaAs.J. Appl. Phys. (1979),50, n° 8, pp. 5339–5344.

    Article  Google Scholar 

  4. Dilorenzo (J. V.), Khandelwal (D. D.). GaAsFet principles and technology.Artech House (1982).

  5. Houng (Y. M.), Pearson (G. L.). Deep trapping effects at the GaAs-GaAs: Cr interface in GaAsFet structures.J. Appl. Phys. (1978),49, n° 6, pp. 3348–3352.

    Article  Google Scholar 

  6. Bonjour (P.), Castagne (R.), Pone (J.-F.), Courat (J.-P.), Bert (G.), Nuzillat (G.), Peltier (M.). Saturation mechanism in 1 μm gate GaAsFet with channel-substrate interfacial barrier.IEEE Trans. ED (1980),27, n° 6, pp. 1019–1024.

    Article  Google Scholar 

  7. Itoh (T.), Yanai (H.). Stability of performance and inter-facial problems in GaAsMesFet’s.IEEE Trans. ED (1980),27, n° 6, pp. 1037–1045.

    Article  Google Scholar 

  8. Wallis (R. H.), Faucher (A.), Pons (D.), Jay (P.R.). Surface and bulk traps in GaAs Mefet’s. Gallium arsenide and related compounds.Inst. Phys. Conf. Ser., London (1984), n° 74, pp. 287–292.

  9. Tegude (F. J.), Heime (K.). Investigation of deep levels at interfaces by means of Fet structures and optical excitation. Gallium arsenide and related compounds.Inst. Phys. Conf. Ser., London (1984), n° 74, pp. 305–310.

  10. Lee (C. P.), Lee (S. J.), Welch (B. M.). Carrier injection and backgating effects in GaAsMesfet’s.IEEE Trans. ED Letters (1982),3, n° 4, pp. 97–98.

    Article  Google Scholar 

  11. El-Ghazaly (S.), Lefebvre (M.), Salmer (G.), Ibrahim (M.), El-Sayed (O. L.). Two dimensionalFet simulation in non-stationary conditions.Proceedings of the european solid state devices research conf. (1983), pp. 127–128.

  12. El-Ghazaly (S.), Itoh (T.). Two-dimensional numerical simulation of short-gate-length GaAs Mesfet’s and application to study the traveling gunn domain phenomenon.International journal of numerical modeling (1988),1, n° 1

  13. Ibrahim (M.). Two dimensional simulation of microwave gallium arsenide submicronic-gate field-effect transistor.M. Sc. Thesis, Cairo Univ., Egypt (1983).

    Google Scholar 

  14. Cook (R.), Frey (J.). Two-dimensional numerical simulation of energy transport effects in Si and GaAsMesfet’s.IEEE Trans. ED (1982),29, n° 6, pp. 970–977.

    Article  Google Scholar 

  15. Curtice (W.), Yun (Y.). A temperature model for the GaAs MESFET.IEEE Trans. ED (1981),28, n° 8, pp. 954–962.

    Article  Google Scholar 

  16. Snowden (C.), Loret (D.). Two-dimensional hot-electron models for short-gate-length GaAsMesfet’s.IEEE Trans. ED (1987),34, n° 2, pp. 212–223.

    Article  Google Scholar 

  17. Makram-Ebied (S.), Minondo (P.). The roles of the surface and bulk of the semi-insulating substrate in low-frequency anomalies of GaAs integrated circuits.IEEE Trans. ED (1985),32, n° 3. pp. 632–642.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Ghazaly, S., Itoh, T. Effect of carrier injection into MESFET substrates : comparison of MESFET on a semi-insulating buffer, MESFET on a P substrate, and substrate-less MESFET. Ann. Télécommun. 43, 415–422 (1988). https://doi.org/10.1007/BF02999711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02999711

Key words

Mots clés

Navigation