Skip to main content
Log in

Microbial phenol degradation of organic compounds in natural systems: Temperature-inhibition relationships

  • Research Articles
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The combined influence of high phenol concentrations and low temperatures on aerobic and anaerobic phenol degradation kinetics was investigated in microbial enrichment cultures to evaluate temperature-inhibition relationships with respect to the ambient conditions in polluted habitats. The inhibition of microbial phenol degradation by excess substrate was found to be temperature-dependent. Substrate inhibition was intensified when temperatures were lower. This results in an elevated temperature sensitivity of phenol degradation at inhibitory substrate concentrations.

The synergistic amplification of substrate inhibition at low temperatures may help to explain the limited self-purification potential of contaminated habitats such as soils, sediments and groundwater aquifers where high pollutant concentrations and low temperatures prevail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, P.D.: Water pollution biology. Ellis Horwood Ltd., Chichester (1989)

    Google Scholar 

  2. Cairns, J. Jr.;A.G. Heath;B.C. Parker: The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiol.47, 135–171 (1975)

    Article  CAS  Google Scholar 

  3. Duangsawadsi, M.; J.F. Klaverkamp: Acephate and fenitrothion toxicity in rainbow trout: Effects of temperature stress and investigations on the site of action. In Aquatic Toxicology. Proceedings of the Second Annual Symposium on Aquatic Toxicology. Marking, L.L., Kimerle, R.A. (eds.) (1979)

  4. Smith, M.G.;A.G. Heath: Acute toxicity of copper, chromate, zinc and cyanide to freshwater fish: effect of different temperatures. Bull. Environ. Contam. Toxicol.22, 113–119 (1979)

    Article  CAS  Google Scholar 

  5. Felts, P.A.;A.G. Heath: Interactions of temperature and sublethal environmental copper exposure on the energy metabolism of the bluegill,Lepomis macrochirus Rafinesque. J. Fish Biol.25, 445–453 (1984)

    Article  CAS  Google Scholar 

  6. Khangarot, B.S.;P.K. Ray: Studies on the acute toxicity of copper and mercury alone and in combination to the common guppyPoecilia reticulata (Peters). Arch. Hydrobiol.110, 303–314 (1987)

    CAS  Google Scholar 

  7. Pfeiffer, S.;O. Manns: Photometrische Bestimmung einiger Arzneimittel mit 4-Aminoantipyrin. Pharmazie12, 401–408 (1957)

    Google Scholar 

  8. Edwards, V.H.: The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng.12, 679–712 (1970)

    Article  CAS  Google Scholar 

  9. Westermann, P.;B.K. Ahring;R.A. Mah: Temperature compensation inMethanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol.55, 1262–1266 (1989)

    CAS  Google Scholar 

  10. Magbanua, B.S., Jr.;P.A. Hoover;P.J. Campbell;A.R. Bowers: The effect of cosubstrates on phenol degradation kinetics. Wat. Sci. Tech.30, 67–77 (1994)

    CAS  Google Scholar 

  11. Hochachka, P.W.;G.N. Somero: Strategies of biochemical adaptation. W.B. Saunders Company, Philadelphia (1973)

    Google Scholar 

  12. Hazel, J.R.;C.L. Prosser: Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev.54, 620–677 (1974)

    CAS  Google Scholar 

  13. Prosser, C.L.: Adaptational biology. Molecules to organisms. John Wiley & Sons (1986)

  14. Hugo, W.B.: The action of phenol and 2-phenoxyethanol on the oxidation of various substances byEscherichia coli and by disrupted cell preparation of the organism. J. Gen. Microbiol.15, 315–323 (1956)

    CAS  Google Scholar 

  15. Wedding, R.T.;C. Hansch, C.T.R. Fukuto: Inhibition of malate dehydrogenase by phenols and the influence of ring substituents on their inhibitory effectiveness. Arch. Biochem. Biophys.121, 9–21 (1967)

    Article  CAS  Google Scholar 

  16. Chang, K.Y.: Interaction of phenol with the polysaccharide of bacterial cell wall. Biochem. Biophys. Res. Comm.51, 900–906 (1973)

    Article  CAS  Google Scholar 

  17. Hugo, W.B.: The inactivation of vegetative bacteria by chemicals. In: Inhibition and inactivation of vegetative microbes. The Society of Applied Bacteriology. Symposium series No. 5, 1–11.Skinner, F.A., Hugo, W.B. (eds.), Academic Press, New York (1976)

    Google Scholar 

  18. Keweloh, H.;G. Weyrauch;H.-J. Rehm: Phenol-induced membrane changes in free and immobilizedEscherichia coli. Appl. Microbiol. Biotechnol.33, 66–71 (1990)

    Article  CAS  Google Scholar 

  19. Keweloh, H.; H.-J. Heipieper; R. Diefenbach; H.-J. Rehm: Mechanisms of phenol degrading bacteria for the protection from substrate toxicity.

  20. DECHEMA Biotechnology Conference 5, VCH Verlagsgesellschaft (1992)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eismann, F., Kuschek, P. & Stottmeister, U. Microbial phenol degradation of organic compounds in natural systems: Temperature-inhibition relationships. Environ. Sci. & Pollut. Res. 4, 203–207 (1997). https://doi.org/10.1007/BF02986346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986346

Keywords

Navigation