Skip to main content
Log in

Random complex zeroes, I. Asymptotic normality

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider three models (elliptic, flat and hyperbolic) of Gaussian random analytic functions distinguished by invariance of their zeroes distribution. Asymptotic normality is proven for smooth functionals (linear statistics) of the set of zeroes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bleher and D. Ridzal, SU(1,1)random polynomials, Journal of Statistical Physics106 (2002), 147–171.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Bleher, B. Shiffman and S. Zelditch,Poincaré Lelong approach to universality and scaling of correlations between zeros. Communications in Mathematical Physics208 (2000), 771–785.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Bleher, B. Shiffman and S. Zelditch,Universality and scaling of correlations between zeros on complex manifolds, Inventiones Mathematicae142 (2000), 351–395.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Bleher, B. Shiffman and S. Zelditch,Universality and scaling of zeros on symplectic manifolds, Random matrix models and their applications, Mathematical Sciences Research Institute Publications, 40, Cambridge University Press, Cambridge, 2001, pp. 31–69.

    Google Scholar 

  5. E. Bogomolny, O. Bohigas and P. Lebouef,Distribution of roots of random polynomials, Physical Review Letters68 (1992), 2726–2729.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Bogomolny, O. Bohigas and P. Lebouef,Quantum chaotic dynamics and random polynomials, Journal of Statistical Physics,85 (1995), 639–679.

    Article  Google Scholar 

  7. P. Breuer and P. Major,Central limit theorems for nonlinear functionals of Gaussian fields, Journal of Multivariate Analysis13 (1983), 425–441.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Calabi,Isometric imbedding of complex manifolds, Annals of Mathematics, (2)58 (1953), 1–23.

    Article  MathSciNet  Google Scholar 

  9. A. Edelman and E. Kostlan,How many zeros of a random polynomial are real? Bulletin of the American Mathematical Society32 (1995), 1–37.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. J. Forrester and G. Honner,Exact statistical properties of complex random polynomials, Journal of Physics. A. Mathematical and General32 (1999), 2961–2981.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Gromov,Convex sets and Kähler manifolds, inAdvances in Differential Geometry and Topology (F. Tricerrl, ed.), World Science Publishing, Teaneck, NJ, 1990, pp. 1–38.

    Google Scholar 

  12. J. H. Hannay,Chaotic analytic zero points: exact statistics for those of a random spin state, Journal of Physics. A. Mathematical and General29 (1996), L101-L105.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. H. Hannay,The chaotic analytic function, Journal of Physics. A. Mathematical and General31 (1998), L755-L761.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Janson,Gaussian Hilbert Spaces, Cambridge University Press, 1997.

  15. J.-P. Kahane,Some Random Series of Functions, Cambridge University Press, 1985.

  16. E. Kostlan,On distribution of roots of random polynomials, inFrom Topology to Computation: Proceedings of the Smalefest (M. W. Hirsch, J. E. Marsden and M. Shub, eds.), Springer-Verlag, New York, 1993, pp. 419–431.

    Google Scholar 

  17. P. Leboeuf,Random analytic chaotic eigenstates, Journal of Statistical Physics95 (1999), 651–664.

    Article  MATH  MathSciNet  Google Scholar 

  18. N. B. Maslova,The variance of the number of real roots of random polynomials, Teoriya Veroyatnostei i Primereniya,19 (1974), 36–51 (Russian).

    MathSciNet  Google Scholar 

  19. N. B. Maslova,The distribution of the number of real roots of random polynomials, Teoriya Veroyatnostel i Primereniya19 (1974), 488–500 (Russian).

    MathSciNet  Google Scholar 

  20. A. M. Perelomov,Generalized Coherent States and Their Applications, Springer, Berlin, 1986.

    MATH  Google Scholar 

  21. Yu. Peres and B. Virág,Zeros of the i.i.d. Gaussian power series and a conformally invariant determinantal process arXiv: math.PR/0310297.

  22. B. Shiffman and S. Zelditch,Distribution zeros of random and quantum chaotic sections of positive line bundles, Communications in Mathematical Physics200 (1999), 661–684.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Shub and S. Smale,Complexity of Bezout’s Theorem. I: Geometric Aspects; II: Volumes and Probabilities; III: Condition Number and Packing; IV: Probability of Success; Extensions; V: Polynomial Time, inThe Collected Papers of Stephen Smale, Vol. 3 (F. Cucker and R. Wong, eds.), World Scientific, Singapore, 2000, pp. 1359–1476.

    Google Scholar 

  24. M. Sodin,Zeros of Gaussian analytic functions, Mathematical Research Letters7 (2000), 371–381.

    MATH  MathSciNet  Google Scholar 

  25. M. Sodin and B. Tsirelson,Random complex zeroes, II. Perturbed lattice, arXiv:math.CV/0309449.

  26. A. Soshnikov,Determinantal random point fields, Russian Mathematical Surveys55 (2000), 923–975.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Spera and G. Valli,Remarks on Calabi’s diastasis function and coherent states, The Quarterly Journal of Mathematics. Oxford (2)44 (1993), 497–512.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Zelditch,From random polynomials to symplectic geometry, inXIIIth International Congress on Mathematical Physics (London, 2000), International Press, Boston, MA, 2001, pp. 367–376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Sodin.

Additional information

Supported by the Israel Science Foundation of the Israel Academy of Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sodin, M., Tsirelson, B. Random complex zeroes, I. Asymptotic normality. Israel J. Math. 144, 125–149 (2004). https://doi.org/10.1007/BF02984409

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984409

Keywords

Navigation