Skip to main content
Log in

Effect of rapid and gradual increase of osmotic stress on survival of entomopathogenic nematodes

  • Nematology
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The effect of rapid and gradual exposure of entomopathogenic nematodes to osmotic stresses on the induction of a dormant state was determined with the nematodeSteinernema feltiae IS-6 infective juveniles (IJs). Rapid exposure of nematodes to glycerol at concentrations of 24% and 28% (w/w) caused the nematodes to enter a dormant state which was characterized by shrinking and impeded motility of all nematodes within 8 h. However, pre-exposure to gradually increasing glycerol concentrations of 5%, 10% and 18% at 4-h intervals resulted in dormancy after 4 h exposure to 24% glycerol. The total time of exposure to glycerol solution was 16 h in gradual osmotic stress. For nematodes exposed to 24% glycerol solution either rapidly or gradually, recovery occurred after 40 min in distilled water. Infectivity of osmotically stressedS. feltiae IJs was evaluated by two criteria, insect mortality and invasion rate. The assays indicated that infectivity of nematodes desiccated by rapid and gradual osmotic stresses was similar to that of fresh nematodes. Rapid exposure ofS. carpocapsae ‘All’,S. riobravis ‘Texas’,S. glaseri ‘NI’ andHeterorhabditis bacteriophora HP88 IJs to the 24% glycerol solution resulted in dormancy within 8 h. These treatments caused mortality of 48.4% and 11.7% amongS. glaseri Nl andH. bacteriophora HP88 IJs, respectively. Similar effects were observed when these nematode species were exposed to increasing osmotic stress of 5%, 10% and 18% at 6-h intervals. Under these same conditions, mortality ofH. bacteriophora HP88 andS. glaseri Nl IJs was 27.5% and 61.8%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, J. (1991) Anhydrobiotic nematodes.Agric. Zool. Rev. 4:161–176.

    Google Scholar 

  2. Behm, C.A. (1997) The role of trehalose in the physiology of nematodes.Int. J. Parasitol. 27:215–229.

    Article  PubMed  CAS  Google Scholar 

  3. Caroli, L., Glazer, I. and Gaugler, R. (1996) Entomopathogenic nematode infectivity assay: comparison of penetration rate into different hosts.Biocontrol Sci. Technol. 6:227–233.

    Article  Google Scholar 

  4. Chen, S., Yang, H. and Jiang, S. (2000) Studies on the biochemical characters ofSteinernema carpocapsae BJ in anhydrobiosis.Acta Parasitol. Med. Entomol. Sin. 7:30–34.

    Google Scholar 

  5. Chen, S., Yang, H. and Jiang, S. (2001) Morphology and oxygen consumption of entomopathogenic nematodeSteinernema carpocapsae BJ in anhydrobiosis.Acta Entomol. Sin. 44:62–66.

    CAS  Google Scholar 

  6. Chen, S., Yang, H., Jiang, S., Jian, H. and Yang, X. (2001) Ultrastructure ofSteinernema carpocapsae BJ in anhydrous dormancy.Acta Zool. Sin. 47:442–446.

    Google Scholar 

  7. Cossins, A.R. and Bowler, K. (1987) Temperature Biology of Animals. Chapman & Hall, London, UK.

    Google Scholar 

  8. Crowe, J., Hoekstra, F.A. and Crowe, L.M. (1992) Anhydrobiosis.Annu. Rev. Physiol. 54:579–599.

    Article  PubMed  CAS  Google Scholar 

  9. Evans, A.A.F. (1987) Diapause in nematodes as a survival strategy.in: Veech, J.A. and Dickson, D.W. [Eds.] Vistas on Nematology. Society of Nematologists. Hyattsville, MD, USA. pp. 180–187.

    Google Scholar 

  10. Finnegan, M.M., Downes, J.D., O’Regan, M. and Griffin, C.T. (1999) Effect of salt and temperature stresses on the survival and infectivity ofHeterorhabditis spp. infective juveniles.Nematology 1:69–78.

    Google Scholar 

  11. Glazer, I. (2002) Survival biology.in: Gaugler, R. [Ed.] Entomopathogenic Nematology. CAB, London, UK. pp. 169–187.

    Google Scholar 

  12. Glazer, I., Liran, N. and Steinberger, Y. (1991) A survey of entomopathogenic nematodes (Rhabditida) in the Negev Desert.Phytoparasitica 19:291–300.

    Google Scholar 

  13. Glazer, I. and Salame, L. (2000) Osmotic survival of the entomopathogenic nematodeSteinernema carpocapsae.Biol. Control 18:251–257.

    Article  Google Scholar 

  14. Kaya, H.K. (1990) Soil ecology.in: Gaugler, R. and Kaya, H.K. [Eds.] Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, FL, USA. pp. 93–115.

    Google Scholar 

  15. Kaya, H.K. and Stock, S.P. (1997) Techniques in insect nematology.in: Lacey, L. [Ed.] Manual of Techniques in Insect Pathology. Academic Press, San Diego, CA, USA. pp. 281–324.

    Chapter  Google Scholar 

  16. Kung, S.P. and Gaugler, R. (1990) Soil type and entomopathogenic nematodes persistence.J. Invertebr. Pathol. 55:401–406.

    Article  Google Scholar 

  17. Kung, S.P., Gaugler, R. and Kaya, H.K. (1991) Effects of soil temperature, moisture and relative humidity on entomopathogenic nematodes persistence.J. Invertebr. Pathol. 57:242–249.

    Article  Google Scholar 

  18. Liu, Q. and Glazer, I. (2000) Desiccation survival of entomopathogenic nematodes of the genusHeterorhabditis.Phytoparasitica 28:331–340.

    Google Scholar 

  19. Liu, Q., Piggott, J., Solomon, A. and Glazer, I. (2002) Physiological and biochemical changes in nematodes of the genusHeterorhabditis following desiccation.Phytoparasitica 28:253–261.

    Google Scholar 

  20. Perry, R.N. (1998) Survival of terrestrial organisms.in: Glazer, I., Richardson, P., Boemare, N. and Coudert, F. [Eds.] Survival of Entomopathogenic Nematodes. European Commission Press, Warwick, UK. pp. 7–13.

    Google Scholar 

  21. Perry, R.N. (1999) Desiccation survival of parasitic nematodes.Parasitology 119:19–30.

    Article  Google Scholar 

  22. Piggott, J.S., Perry, R.N. and Wright, D.J. (2000) Hypo-osmotic regulation in entomopathogenic nematodesSteinernema spp. andHeterorhabditis spp.Nematology 2:561–566.

    Article  Google Scholar 

  23. Piggott, J.S., Qhi-Zhi, L., Glazer, I. and Wright, D.J. (2002) Does osmoregulatory behaviour in entomopathogenic nematodes predispose desiccation tolerance?Nematology 4:483–488.

    Article  Google Scholar 

  24. Precht, H. (1958) Concepts of the temperature adaptation of unchanging reaction systems of cold-blooded animals.in: Prosser, C.L. [Ed.] Physiological Adaptation. American Association for the Advancement of Science, Washington, DC. pp. 351–376.

    Google Scholar 

  25. Ricci, M., Glazer, I., Campbell, J.F. and Gaugler, R. (1996) Comparison of bioassays to measure virulence of different entomopathogenic nematodes.Biocontrol Sci. Technol. 6:235–245.

    Article  Google Scholar 

  26. SAS (1988) SAS/STAT User’s Guide, release 6.12. SAS Institute Inc., Cary, NC, USA.

    Google Scholar 

  27. Simons, W.R. and Poinar, G.O. Jr. (1973) The ability ofNeoaplectana carpocapsae (Steinernematidae: Nematodea) to survive extended periods of desiccation.J. Invertebr. Pathol. 22:228–230.

    Article  Google Scholar 

  28. Solomon, A., Paperna, I. and Glazer, I. (1998) Physiological and behavioural adaptation ofSteinernema feltiae to desiccation stress.in: Glazer, I., Richardson, P., Boemare, N. and Coudert, F. [Eds.] Survival of Entomopathogenic Nematodes. European Commission Press, Warwick, UK. pp. 84–98.

    Google Scholar 

  29. Solomon, A., Paperna, I. and Glazer, I. (1999) Desiccation survival of the entomopathogenic nematodeSteinernema feltiae: Induction of anhydrobiosis.Nematology 1:61–68.

    CAS  Google Scholar 

  30. Solomon, A., Salomon, R., Paperna, I. and Glazer, I. (2000) Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein.Parasitology 121:409–416.

    Article  PubMed  CAS  Google Scholar 

  31. Thurston, G.S., Ni, Y. and Kaya, H.K. (1994) Influence of salinity on survival and infectivity of entomopathogenic nematodes.J. Nematol. 26:345–351.

    Google Scholar 

  32. Womersley, C.Z. (1987) A reevaluation of strategies employed by nematode anhydrobiotes in relation to their natural environment.in: Veech, J.A. and Dickson, D.W. [Eds.] Vistas on Nematology. Society of Nematologists. Hyattsville, MD, USA. pp. 165–173.

    Google Scholar 

  33. Womersley, C.Z. (1990) Dehydration survival and anhydrobiotic potential.in: Gaugler, R. and Kaya, H.K. [Eds.] Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, FL, USA. pp. 117–137.

    Google Scholar 

  34. Womersley, C.Z., Wharton, D.A. and Higa, L.M. (1998) Survival biology.in: Perry, R.N. and Wright, D.J. [Eds.] The Physiology and Biochemistry of Free-Living and Plant-Parasitic Nematodes. CABI Publishing, London, UK. pp. 271–302.

    Google Scholar 

  35. Wright, D.J. (1998) Respiratory, physiology, nitrogen excretion and osmotic and ionic regulation.in: Perry, R.N. and Wright, D.J. [Eds.] The Physiology and Biochemistry of Free-Living and Plant-Parasitic Nematodes. CABI Publishing, London, UK. pp. 103–132.

    Google Scholar 

  36. Zitman, G.T., Glazer, I. and Koltai, H. (2003) Differential gene expression during desiccation stress in the insect-killing nematodeSteinernema feltiae IS-6.J. Parasitol. 89:761–766.

    Article  Google Scholar 

  37. Zitman, G.T., Solomon, A., Glazer, I. and Koltai, H. (2001) Alterations in the levels of glycogen and glycogen synthase transcripts during desiccation in the insect-killing nematodeSteinernema feltiae IS-6.J. Parasitol. 87:725–732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbi Chen.

Additional information

http://www.phytoparasitica.org posting Sept. 29, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Glazer, I. Effect of rapid and gradual increase of osmotic stress on survival of entomopathogenic nematodes. Phytoparasitica 32, 486–497 (2004). https://doi.org/10.1007/BF02980443

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980443

Key words

Navigation