Skip to main content
Log in

Beyond the genetic lesions: gene inactivation by promoter hypermethylation in human cancer

Más allá de las lesiones genéticas: inactivación genética por hipermetilación del promotor en cáncer humano

  • Revisiones
  • Published:
Revista de Oncología Aims and scope Submit manuscript

Abstract

Genetic alterations in key genes are distinctive of a cancer cell. But the tumors also undergo other changes specific of the malignant transformation that do not affect the sequence of DNA. These are given the term epigenetic lesions, and the main one is aberrant methylation. In this review we focus in how promoter hypermethylation silences the expression of genes contributing to the neoplastic phenotype. Well recognized tumor suppressor genes such asp16/INK4a, BRCA1, Rb andVHL became hypermethylated in sporadic tumors with very selective patterns. Other genes recently characterized such asp14/ARF, LKB1, p73, E-cadherin andDAP-Kinase are also epigenetically inactivated in tumors. Furthermore, the methylation mediated silencing of DNA repair and detoxifier genes, such as the mismatch repair genehMLH1, the alkylrepairMGMT and the carcinogen-protectorGSTP1, may cause important genomic damage and mutations. All this recent data may provide a new avenue in how we understand the development, diagnosis and treatment of cancer.

Resumen

Las alteraciones genéticas que afectan a genes transformantes son distintivas de la célula cancerosa. Pero los tumores también sufren otra serie de cambios propios de la malignización que no cambian la secuencia de ADN. Estas lesiones son denominadas epigenéticas y la principal es el tratorno de la metilación del ADN. En esta revisión nos centraremos sólo en cómo el silenciamiento de los genes por hipermetilación de sus promotores contribuye al fenotipo neoplásico. Genes supresores tumorales importantes comop16INK4a, BRCA1, Rb yVHL están hipermetilados en ciertos tumores esporádicos con patrones muy específicos. Otros genes recientemente caracterizados comop14/ARF, LKB1, p73, E-cadherin yDAP-Kinase también están inactivados epigenéticamente en tumores. Un fenómeno interesante es que el silenciamiento por metilación de ciertos genes reparadores del ADN y detoxificadores, como el gen de reparación demismatch hMLH1, el reparador de ciertos grupos alkilantesMGMT y el protector de carcinógenosGSTP1, puede originar lesiones genéticas y mutaciones. Los recientes descubrimientos en este campo nos pueden proporcionar mejores formas de entender y controlar el problema del cáncer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 1991; 48: 880–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Herman JG, Latif F, Weng Y et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 1994; 91: 9700–9704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Herman, JG, Merlo A, Mao L et al. Inactivation of theCDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995; 55: 4525–4530.

    CAS  PubMed  Google Scholar 

  4. Merlo A, Herman JG, Mao L et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressorp16/CDKN2/MTS1 in human cancers. NatMed 1995; 1: 686–692.

    CAS  Google Scholar 

  5. Esteller M, Tortola S, Toyota M et al. Hypermethylation-associated inactivation ofp14ARF is independent ofp16INK4a methylation andp53 mutational status. Cancer Res, 2000; 60: 129–133.

    CAS  PubMed  Google Scholar 

  6. Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role forp15INK4B. Cancer Res 1996; 56: 722–727.

    CAS  PubMed  Google Scholar 

  7. Dobrovic A, Simpfendorfer D. Methylation of theBRCA1 gene in sporadic breast cancer. Cancer Res 1997; 57: 3347–3350.

    CAS  PubMed  Google Scholar 

  8. Catteau A, Harris WH, Xu CF, Solomon E. Methylation of theBRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene 1999; 18: 1957–1965.

    Article  CAS  PubMed  Google Scholar 

  9. Esteller M, Silva JM, Domínguez, G et al. Promoter hypermethylation is a cause of BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 2000; 92: 564–569.

    Article  CAS  PubMed  Google Scholar 

  10. Esteller M, Avizienyte E, Corn PC et al. Epigenetic inactivation ofLKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene, 2000; 19: 164–168.

    Article  CAS  PubMed  Google Scholar 

  11. Corn PG, Kuerbitz SJ, Van Noesel MM et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res 1999; 59: 3352–3356.

    CAS  PubMed  Google Scholar 

  12. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 1994; 54: 2552–2555.

    CAS  PubMed  Google Scholar 

  13. Lapidus RG, Ferguson AT, Ottaviano YL et al. Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res 1996; 2: 805–810.

    CAS  PubMed  Google Scholar 

  14. Graff JR, Herman JG, Lapidus RG et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 1995; 55: 5195–5199.

    CAS  PubMed  Google Scholar 

  15. Katzenellenbogen RA, Baylin SB, Herman JG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 1999; 93: 4347–4353.

    CAS  PubMed  Google Scholar 

  16. Esteller M, Sánchez-Céspedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 1999; 59: 67–70.

    CAS  PubMed  Google Scholar 

  17. Sánchez-Céspedes M, Esteller M, Wu L et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 2000 (en prensa).

  18. Kane MF, Loda M, Gaida GM et al. Methylation of thehMLH1 promoter correlates with lack of expression ofhMLH1 in sporadic colon tumors and mismatch repairdefective human tumor cell lines. Cancer Res 1997; 57: 808–811.

    CAS  PubMed  Google Scholar 

  19. Herman JG, Umar A, Polyak K et al. Incidence and functional consequences ofhMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 1998; 95: 6870–6875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG.MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 1998; 17: 2413–2417.

    Article  CAS  PubMed  Google Scholar 

  21. Esteller M, Catasus L, Matias-Guiu X et al.hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol 1999; 155: 1767–1772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair geneO6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 1999; 59: 793–797.

    CAS  PubMed  Google Scholar 

  23. Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res 1998; 58: 4515–4518.

    CAS  PubMed  Google Scholar 

  24. Boland CR, Thibodeau SN. Hamilton SR et al. A National Cancer Institute Workshop on Micro satellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248–5257.

    CAS  PubMed  Google Scholar 

  25. Bocker T, Ruschoff J, Fishel R. Molecular diagnostics of cancer predisposition: hereditary non-polyposis colorectal carcinoma and mismatch repair defects. Biochim Biophys Acta 1999; 1423(3): 01–010.

    Google Scholar 

  26. Thibodeau SN, French AJ, Roche PC et al. Altered expression of hMSH2 and hMLH1 in tumors with micro satellite instability and genetic alterations in mismatch repair genes. Cancer Res 1996; 56: 4836–4840.

    CAS  PubMed  Google Scholar 

  27. Fleisher AS, Esteller M, Wang S et al. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 1999; 59: 1090–1095.

    CAS  PubMed  Google Scholar 

  28. Hussain SP, Harris CC.p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer. MutatRes 1999; 428: 23–32.

    CAS  Google Scholar 

  29. Pegg AE, Dolan ME, Moschel RC. Structure, function, and inhibition ofO6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol 1995; 51: 167–223.

    Article  CAS  PubMed  Google Scholar 

  30. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994; 54: 4313–4320.

    CAS  PubMed  Google Scholar 

  31. Lee WH, Morton RA, Epstein JI et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 1994; 91: 11733–11737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cavalieri EL, Stack DE, Devanesan PD et al. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA 1997; 94: 10937–10942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahrendt SA, Chow JT, Xu, LH et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 1999; 91: 332–339.

    Article  CAS  PubMed  Google Scholar 

  34. Belinsky SA, Nikula KJ, Palmisano WA et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 1998; 95: 11891–1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sánchez-Céspedes M, Esteller M, Hibi K et al. Molecular detection of neoplastic cells in lymph nodes of metastatic colorectal cancer patients predicts recurrence. Clin Cancer Res 1999; 5: 2450–2454.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Esteller.

Additional information

Part of the work included in this review received the First Prize in Basic Research at The Johns Hopkins Oncology Center Fellows Day in the summer of 1999 awarded to Dr. Manel Esteller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteller, M., Baylin, S.B. & Herman, J.G. Beyond the genetic lesions: gene inactivation by promoter hypermethylation in human cancer. Rev Oncología 2, 61–66 (2000). https://doi.org/10.1007/BF02979467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02979467

Key words

Palabras clave

Navigation