Skip to main content

Advertisement

Log in

Pet myocardial glucose metabolism and perfusion imaging: Part I — Guidelines for patient preparation and data acquisition

  • Published:
Journal of Nuclear Cardiology Aims and scope

An Erratum to this article was published on 01 March 2004

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dilsizian V. Myocardial viability: a clinical and scientific treatise. Armonk (NY): Futura; 2000. p. 448.

    Google Scholar 

  2. Schelbert HR. F-18-deoxyglucose and the assessment of myocardial viability. Semin Nucl Med 2002;32:60–9.

    Article  PubMed  Google Scholar 

  3. Shoder J, Schelbert HR. Positron emission tomography for the assessment of myocardial viability. In: Dilsizian V, editor. Myocardial viability: a clinical and scientific treatise. Armonk (NY): Futura; 2000. p. 391–418.

    Google Scholar 

  4. Beanlands RSB, Muzik O, Melon P, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995;26:1465–75.

    Article  PubMed  CAS  Google Scholar 

  5. Bergmann SR. Quantification of myocardial perfusion with positron emission tomography. In: Sobel BE, editor. Positron emission tomography of the heart. Mount Kisco (NY): Futura; 1992. p. 97–127.

    Google Scholar 

  6. Cardiogen-82 rubidium Rb-82 [package insert]. Princeton (NJ): BraccoDiagnostics; 2000.

  7. Choi Y, Huang SC, Hawkins RA, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic PET. J Nucl Med 1993;34:488–97.

    PubMed  CAS  Google Scholar 

  8. Hutchins GD, Schwaiger M, Rosenspire KC, et al. Noninvasive quantification of regional blood-flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032–42.

    Article  PubMed  CAS  Google Scholar 

  9. Krivokapich J, Smith GT, Huang SC, et al. 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 1989;80:1328–37.

    PubMed  CAS  Google Scholar 

  10. Schwaiger M, Ziegler SI, Bengel FM. Assessment of myocardial blood flow with positron emission tomography. In: Shah PM, editor. Imaging in cardiovascular disease. Philadelphia: Lippincott Williams and Wilkins; 2000. p. 195–212.

    Google Scholar 

  11. Port SC, Berman DS, Garcia EV, et al. J Nucl Cardiol 1999;6: G53–83.

    Article  Google Scholar 

  12. Ohtake T, Yokoyama I, Watanabe T, et al. Myocardial glucosemetabolism in noninsulin-dependent diabetes-mellitus patients evaluated by FDG-PET. J Nucl Med 1995;36:456–63.

    PubMed  CAS  Google Scholar 

  13. Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–62.

    PubMed  CAS  Google Scholar 

  14. Vitale GD, deKemp RA, Ruddy TD, Williams K, Beanlands RS. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730–6.

    PubMed  CAS  Google Scholar 

  15. Martin WH, Jones RC, Delbeke D, Sandler MP. A simplified intravenous glucose loading protocol for fluorine-18 fluorodeoxyglucose cardiac single-photon emission tomography. Eur J Nucl Med 1997;24:1291–7.

    Article  PubMed  CAS  Google Scholar 

  16. Stone CK, Holden JE, Stanley W, Perlman SB. Effect of nicotinic acid on exogenous myocardial glucose utilization. J Nucl Med 1995;36:996–1002.

    PubMed  CAS  Google Scholar 

  17. Bax JJ, Veening MA, Visser FC, et al. Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 1997;24: 35–41.

    Article  PubMed  CAS  Google Scholar 

  18. Streeter J, Churchwell K, Sigman S, et al. Clinical glucose loading protocol for F-18 FDG myocardial viability imaging [abstract]. Molec Imaging Biol 2002;4:192.

    Google Scholar 

  19. Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30:359–66.

    PubMed  CAS  Google Scholar 

  20. Schwaiger M, editor. Cardiac positron emission tomography. Boston: Kluwer Academic Publishers; 1996. p. 366.

    Google Scholar 

  21. Garcia EV, Bacharach SL, Mahmarian JJ, et al. Imaging guidelines for nuclear cardiology procedures: part I. J Nucl Cardiol 1996;3: G1–46.

    Google Scholar 

Download references

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02970122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacharach, S.L., Bax, J.J., Case, J. et al. Pet myocardial glucose metabolism and perfusion imaging: Part I — Guidelines for patient preparation and data acquisition. J Nucl Cardiol 10, 545–556 (2003). https://doi.org/10.1007/BF02970271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02970271

Keywords

Navigation