Skip to main content
Log in

Liouvillian integration of the Lotka-Volterra system

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The Lotka-Volterra system of autonomous differential equations consists in three homogeneous polynomial equations of degree 2 in three variables. This system, or the corresponding vector fieldLV(A, B, C), depends on three nonzero (complex) parameters and may be written asLV(A, B, C)=V xx+V yy+V zzwhereV x=x(Cy+z), Vy=y(Az+x), Vz=z(Bx+y). Similar systems of equations have been studied by Volterra in his mathematical approach of the competition of species and this is the reason why this name has been given to such systems.

In fact,LV(A, B, C) can be chosen as a normal form for most of factored quadratic systems; the study of its first integrals of degree 0 is thus of great mathematical interest.

Given a homogeneous vector field, there is a foliation whose leaves are homogeneous surfaces in the three-dimensional space (or curves in the corresponding projective plane), such that the trajectories of the vector field are completely contained in a leaf. A first integral of degree 0 is then a function on the set of all leaves of the previous foliation.

In the present paper, we give all values of the triple (A, B, C) of non-zero parameters for whichLV(A, B, C) has a homogeneous liouvillian first integral of degree 0. We also discuss the corresponding problem of liouvillian integration for quadratic factored vector fields that cannot be put in Lotka-Volterra normal form.

Our proof essentially relies on combinatorics and elementary algebraic geometry, especially in proving that some conditions are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Cairo and J. Llibre,Integrability and algebraic solutions for the 2-D Lotka-Volterra system, preprint 1997.

  2. C. Camacho andA. Lins Neto,The topology of integrable differentiable forms near a singularity, Public. Math. IHES55 (1982), 5–36.

    MATH  Google Scholar 

  3. D. Cerveau and J. F. Mattei,Formes intégrables holomorphes singulières, Astérisques,97, 1982.

  4. D. Cerveau andF. Maghous,Feuilletages algébriques de C n, C. R. Acad. Sci. Paris,303 (1986), 643–645.

    MATH  MathSciNet  Google Scholar 

  5. D. Cerveau,Equations différentielles algébriques: remarques et problémes, J. Fac. Sci. Univ. Tokyo, Sect. I-A, Math.,36 (1989), 665–680.

    MATH  MathSciNet  Google Scholar 

  6. J. Chavarriga, J. Llibre and J. Moulin Ollagnier,About a relation of Darboux in enumerative geometry, preprint, December 2000.

  7. G. Darboux,Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bull. Sc. Math. 2ème sériet. 2 (1878), 60–96, 123–144, 151–200.

    Google Scholar 

  8. B. Grammaticos, J. Moulin Ollagnier, A. Ramani, J.-M. Strelcyn andS. Wojciechowski,Integrals of quadratic ordinary differential equations in ℝ 3: the Lotka — Volterra system, Physica-A163 (1990), 683–722.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.-P. Jouanolou,Equations de Pfaff algébriques, Lect. Notes in Math.708, Springer-Verlag, Berlin (1979).

    MATH  Google Scholar 

  10. A. Maciejewski, J. Moulin Ollagnier, A. Nowicki andJ.-M. Strelcyn,Around Jouanolou non-integrability theorem, Indagationes Mathematicae11, (2000), 239–254.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Moulin Ollagnier andJ.-M. Strelcyn,On first integrals of linear systems, Frobenius integrability theorem and linear representation of Lie algebras in Bifurcations of Planar Vector Fields, Proceedings, Luminy 1989, J.-P. Francoise and R. Roussarie (Eds.)Lecture Notes in Mathematics 1455, Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo (1991), 243–271.

    Google Scholar 

  12. J. Moulin Ollagnier, A. Nowicki andJ.-M. Strelcyn,On the non-existence of constants of derivations: the proof of a theorem of Jouanolou and its development. Bull. Sci. math.119 (1995), 195–233.

    MATH  MathSciNet  Google Scholar 

  13. J. Moulin Ollagnier,Algorithms and methods in differential algebra, Theoretical Computer Science157 (1996), 115–127.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Moulin Ollagnier,Liouvillian first integrals of homogeneous polynomial vector fields, Colloquium MathematicumLXX (1996), 195–217.

    Google Scholar 

  15. J. Moulin Ollagnier,Polynomial first integrals of the Lotka-Volterra system, Bull. Sci. math.121 (1997), 463–476.

    MATH  MathSciNet  Google Scholar 

  16. J. Moulin Ollagnier,Hexagonal graphs in linear algebra, conference, (1998).

  17. J. Moulin Ollagnier,Rational Integration of the Lotka-Volterra system. Bull. Sci. math.123 (1999), 437–466.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Moulin Ollagnier,About a conjecture on quadratic vector fields, to be published in Journal of Pure and Applied Algebra (June 2000).

  19. J. Milnor,Singular points of complex hypersurfaces, Princeton University Press and the University of Tokyo Press, Princeton, New Jersey, 1968.

    MATH  Google Scholar 

  20. P. Painlevé,Œuvres, tomes 1–3, Ed. du CNRS, Paris, 1972, 1974, 1975.

    Google Scholar 

  21. P. Painlevé,Sur les intégrales rationnelles des équations différentielles du premier ordre. C. R. Acad. Sc. Paris110 (1890), 34–36; reprinted in Œuvres, t. 2, 220–222.

    Google Scholar 

  22. P. Painleve,Sur les intégrales algébriques des équations différentielles du premier ordre, C. R. Acad. Sc. Paris110 (1890), 945–948; reprinted in Œuvres, tome 2, 233–235.

    Google Scholar 

  23. P. Painlevé,Mémoire sur les équations différentielles du premier ordre, Ann. Ecole Norm. Sup. lère partie:8 (1891), 9–58, 103–140; 2ème partie:8 (1891), 201–226, 267–284 and9 (1891), 9–30; 3ème partie:9 (1892), 101–144, 283–308; reprinted in Œuvres, tome 2, 237–461.

    Google Scholar 

  24. P. Painlevé,Leçons sur la théorie analytique des équations différentielles professées à Stockholm (Septembre, Octobre, Novembre 1895), sur l'invitation de S. M. le Roi de Suéde et de Norvége, Ed. Hermann, Paris (1897), reprinted in Œuvres, tome 1, 205–800.

    Google Scholar 

  25. P. Painlevé,Mémoire sur les équations différentielles du premier ordre dont l'intégrale est de la forme h(x)(y-g 1(x))λ 1 (y-g 2(x))λ 2...(y-g 1(x))λ n=C, Ann. Fac. Sc. Univ., Toulouse (1896), 1–37; reprinted in Œuvres, tome 2, 546–582.

    Google Scholar 

  26. H. Poincaré,Sur l'intégration algébrique des équations différentielles, C. R. Acad. Sc. Paris112 (1891), 761–764; reprinted in Œuvres, tome III, 32–34, Gauthier-Villars, Paris (1965).

    Google Scholar 

  27. H. Poincare,Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré, Rendic. Circ. Matemm. Palermo5 (1891), 161–191; reprinted in Œuvres, tome III, 35–58, Gauthier-Villars, Paris (1965).

    Article  Google Scholar 

  28. H. Poincaré,Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré, Rendic. Circ. Matem. Palermo11 (1897), 193–239; reprinted in Œuvres, tome III, 59–94, Gauthier-Villars, Paris (1965).

    MATH  Google Scholar 

  29. M. J. Prelle andM. F. Singer,Elementary first integrals of differential equations, Trans. Amer. Math. Soc.279 (1983), 215–229.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. H. Risch,The problem of integration in finite terms, Trans. Amer. Math. Soc.139 (1969), 167–189.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Rosenlicht,On Liouville's theory of elementary functions, Pac. Jour. of Math.65 (1976), 485–492.

    MATH  MathSciNet  Google Scholar 

  32. J.-P. Serre,Groupes algébriques et corps de classes, Hermann, Paris, 1959.

    MATH  Google Scholar 

  33. M. F. Singer,Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc.333 (1992), 673–688.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.-M. Strelcyn andS. Wojciechowski,A method of finding integrals of 3-dimensional dynamical systems, Phys. Letters133A (1988), 207–212.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Moulin Ollagnier.

Additional information

Submitted by J. Llibre

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ollagnier, J.M. Liouvillian integration of the Lotka-Volterra system. Qual. Th. Dyn. Syst 2, 307–358 (2001). https://doi.org/10.1007/BF02969345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02969345

Key Words

Navigation