Skip to main content
Log in

Relationship of periodic pancreatic secretion and gallbladder contraction to plasma cholecystokinin in dogs

  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

Summary

THE role of cholecystokinin (CCK) on the periodic pancreatic secretion and gallbladder contraction was studied in fasting conscious dogs. The bile pressure peak preceded the pancreatic protein peak by about 30 min. Its pressure at the peak was significantly higher than at the pancreatic peak, while pancreatic protein secretion at the bile peak was significantly lower than at its own peak. Plasma CCK levels at the gallbladder and pancreatic peaks were significantly higher than those at the upper gastrointestinal motor and secretory quiescent period. Levels at either peaks, however, did not differ.

Atropine abolished the periodic increase of pancreatic secretion, gallbladder contraction and plasma CCK. It is concluded that the inter-digestive CCK release is dependent on cholinergic nerves. It may modulate the action of the nerves on the pancreas and the gallbladder. Correlation between plasma CCK and pancreatic polypeptide was not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boldyreff, W. Function périodique de l’organisme chez l’homme et les animaux d’ordre superieur (Pancréas comme principal agent du processus de l’assimilation dans tout le corps). Quart. J. Exper. Physiol. 1916: 10, 175–201.

    Google Scholar 

  2. Magee, D. F., Naruse, S. Neural control of periodic secretion of the pancreas and the stomach in fasting dogs. J. Physiol. 1983: 344, 153–60.

    PubMed  CAS  Google Scholar 

  3. Magee, D. F., Naruse, S. and Pap, A. Vagal control of gallbladder contraction. J. Physiol. 1984: 355, 65–70.

    PubMed  CAS  Google Scholar 

  4. Keane, F. B., Di Magno, E. P., Dozois, R. R. and Go, V. Relationship among canine interdigestive exocrine pancreatic and biliary flow, duodenal motor activity, plasma pancreatic polypeptide, and motilin. Gastroenterology. 1980: 78, 310–16.

    PubMed  CAS  Google Scholar 

  5. Chen, M. H., Joffe, S. N., Magee, D. F., Murphy, R. F. and Naruse, S. Cyclic changes of plasma pancreatic polypeptide and pancreatic secretion in fasting dogs. J. Physiol. 1983: 341, 453–61.

    PubMed  CAS  Google Scholar 

  6. Hall, K. E., El-Sharkawy, T. Y. and Diamant, N. I. Vagal control of migrating motor complex in the dog. Am. J. Physiol. 1982: G276–84.

  7. Chen, Y. E., Chey, W. Y., Lee, K. Y. and Chang, T. M. Cyclic change in plasma concentration and exocrine pancreatic sectretion in interdigestive state of dog. Gastroenterology. 1983: 84, 1122.

    Google Scholar 

  8. Itoh, Z. and Takahashi, I. Periodic contraction of the canine gallbladder during the digestive state. Am. J. Physiol. 1981: 240, G183–9.

    PubMed  CAS  Google Scholar 

  9. Lin, T. M. and Chance, R. E. Spectrum of gastrointestinal actions of pancreatic polypeptide. In: Bloom, S., ed. Gut Hormones. Edinburgh: Churchill — Livingstone. 1978: pp. 242–6.

    Google Scholar 

  10. Magee, D. F. and Nakajima, S. The effect of antral acidification on the gastric secretion stimulated by endogenus and exogenus gastrin. J. Physiol. 1968: 196, 713–21.

    PubMed  CAS  Google Scholar 

  11. Magee, D. F., Kim, K. S. and Ivy, A. C. Action of some synthetic choleretic compounds in chronic biliary fistula dogs. Am. J. Physiol. 1952: 169, 337–42.

    PubMed  CAS  Google Scholar 

  12. Anson, M. F. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 1938: 22, 79–89.

    Article  CAS  Google Scholar 

  13. Chance, W. T., Van Lammeren, F. M., Chen, M. H. et al. Plasma and brain cholecystokinin levels in cancer anorexia. J. Surg. Res. 1984: 36.

  14. Murphy, R. F., Balasubramanian, A., Chen, M. H., Cardin, A. D. et al. Specificity of cholecystokinin antibody may influence choice of tracer for radioimmunoassay. J. Immunol. Meth. 1984: F4, 199–203.

    Article  Google Scholar 

  15. Thompson, J. C., Fender, R. H., Ramus, N. I., Villar, H. V. and Rayford, P. L. Cholecystokinin metabolism in man and dogs. Ann. Surg. 1975: 182, 497–504.

    Article  Google Scholar 

  16. Lamars, C., Poitras, P., Jansen, J. E., Walsh, J. H. Relative potencies of cholecystokinin-33 and cholecystokinin-8 measured by radioimmunoassay and bioassay, Scand. J. Gastroenterology Supp. 1982: 18, 191–2.

    Google Scholar 

  17. Solomon, T. F., Yamada, T., Elsahoff, J., Wood, J. Belinger, C. Bioactivity of cholecystokinin analogues: CCK-8 is not more potent than CCK-33. Am. J. Physiol. 1984: 24F, G501-G11.

    Google Scholar 

  18. Jansen, J. and Lamars, C. Radioimmunoassay of cholecystokinin in human tissue and plasma. Clin. Chim. Acta. 1983: 131, 305–16.

    Article  PubMed  CAS  Google Scholar 

  19. Jansen, J. and Lamars, C. Radioimmunoassay of cholecystokinin: Production and evaluation of antibodies. J. Clin. Chem. Clin. Biochem. 1983: 21, 387–94.

    PubMed  CAS  Google Scholar 

  20. Eysselein, V. E., Eberlein, G., Hesse, W., Einger, M. V., Goebell, H. and Reene, I. R. Cholecystokinin-58 is the major form of cholecystokinin in canine blood. J. Biol. Chem. 1986: 262, 214–217.

    Google Scholar 

  21. Ruckebush, Y. and Bueno, L. Migrating myoelectric complex of the small intestine. An intrinsic activity mediated by the vagus. Gastroenterology. 1977: 72, 1309–14.

    Google Scholar 

  22. Hall, K. E., Greenberg, G. R., El-Sharkawy, T. Y. and Diamant, N. I. Vagal control of migrating motor complex-related peaks in canine plasma motilin, pancreatic polypeptide, and gastrin. Can. J. Physiol. Pharm. 1983: 61, 1289–98.

    CAS  Google Scholar 

  23. Magee, D. F. and Naruse, S. The role of motilin in periodic interdigestive pancreatic secretion in dogs. J. Physiol. 1983: 355, 441–7.

    Google Scholar 

  24. Guzman, S., Lonovics, J., Devitt, P. G., Hejtmancik, K. E., Rayford, P. L. and Thompson, J. C. Hormonestimulated release of pancreatic polypeptide before and after vagotomy in dogs. Am. J. Physiol. 1981: 240, G114–21.

    PubMed  CAS  Google Scholar 

  25. Chey, W. Y., Lee, K. Y. and Tai, H. H. Endogenous plasma motilin concentration and interdigestive myoelectric activity of the canine duodenum. In: Bloom, S. R., ed. Gut Hormones. Edinburgh: Churchill — Livingstone. 1978: 355–8.

    Google Scholar 

  26. Schwartz, T. W., Stenquist, B., Olbe, L. and Stadil, F. Synchronous oscillations in the basal secretion of pancreatic polypeptide and gastric acid. Gastroenterology. 1979: 76, 14–9.

    PubMed  CAS  Google Scholar 

  27. Magee, D. F. A consideration of the cholinergic nerve supply to the pancreas. Mount. Sin. J. Med. 1982: 49, 94–101.

    CAS  Google Scholar 

  28. Tahakashi, L., Suzuki, T., Aizawa, I. and Itoh, Z. Comparison of gallbladder contractions induced by motilin and cholecystokinin in dogs. Gastroenterology. 1982: 82, 419–24.

    Google Scholar 

  29. Pallin, B., Skoglun, S. Neural and humoral control of the gallbladder emptying mechanism in the cat. Acta. Physiol. Scand. 1964: 60, 358–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magee, D.F., Murphy, R.F. & Naruse, S. Relationship of periodic pancreatic secretion and gallbladder contraction to plasma cholecystokinin in dogs. I.J.M.S. 157, 261–264 (1988). https://doi.org/10.1007/BF02948283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02948283

Keywords

Navigation