Skip to main content
Log in

Asymptotic inference in discrete response models

  • Articles
  • Published:
Statistische Hefte Aims and scope Submit manuscript

Abstract

Regression models for discrete responses have found numerous applications. We consider logit, probit and cumulative logit models for qualitative data, and the loglinear and linear Poisson model for counted data. Statistical analysis of these models relies heavily on asymptotic likelihood theory, i.e. asymptotic properties of the maximum likelihood estimator and the likelihood ratio as well as related test statistics. In practical situations, previously published conditions assuring these properties may be too strong, or it is difficult to see whether they apply. This paper contributes to a clarification of this point and characterizes to some extent situations where asymptotic theory is applicable and where it is not. In particular, sharp upper bounds on the admissible growth of regressors are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I.A. (1965). Handbook of Mathematical Functions. Dover, New York.

    Google Scholar 

  • Albert, A. and Anderson, J.A. (1984). On the existence of maximum likelihood estimation in logistic regression models, Biometrika 71, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Basawa, J.V. and Scott, D.J. (1983). Asymptotic Optimal Inference for Non-ergodic Models. Springer, Lecture Notes in Statistics, New York.

  • Chung, K.L. (1974). A course in probability theory. Academic Press, New York.

    MATH  Google Scholar 

  • Drygas, H. (1976). Weak and strong consistency of the least squares estimators in regression models. Z. Wahrsch. verw. Gebiete 34, 119–127.

    Article  MathSciNet  Google Scholar 

  • Fahrmeir, L. and Hamerle, A. (ed.) (1984). Multivariate statistische Verfahren. De Gruyter, Berlin.

    MATH  Google Scholar 

  • Fahrmeir, L. and Kaufmann, H. (1985). Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann. Statist. 13, 342–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Fahrmeir, L. (1986). Asymptotic testing theory for generalized linear models. Submitted to Math. Operations-forsch. Statist. Ser. Statist.

  • Gorieroux, C. and Monfort, A. (1981). Asymptotic properties of the maximum likelihood estimator in dichotomous logit models. J. Econometrics 17, 83–97.

    Article  MathSciNet  Google Scholar 

  • Haberman, S. J. (1977a). Maximum likelihood estimates in exponential response models. Ann. Statist. 5, 815–841.

    Article  MathSciNet  MATH  Google Scholar 

  • Haberman, S. J. (1977b). Log-linear models and frequency tables with small expected cell counts. Ann. Statist. 5, 1148–1169.

    Article  MathSciNet  MATH  Google Scholar 

  • Haberman, S. J. (1980). Discussion of McCullagh's paper “Regression models for ordinal data”, J. R. Statist. Soc. B42, 136–137.

    Google Scholar 

  • Ibragimov, I. A. and Has'minskii, R.Z. (1981) Statistical Estimation, Asymptotic Theory. Springer, Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  • Jeganathan, P. (1982). On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. Sankhyá 44, Series A, 173–212.

    MathSciNet  MATH  Google Scholar 

  • Kaufmann, H. (1987). Regression model for nonstationary categorical time series: asymptotic estimation theory. Ann. Statist., to appear.

  • Kaufmann, H. (1986b). On directions of strictness, affinity and constancy of proper convex functions. Preprint.

  • Kaufmann, H. (1986c). On the uniqueness of the maximum likelihood estimator in quantal and ordinal response models. Submitted to Metrika.

  • Lai, T. L., Robbins, H. and Wei, C.Z. (1979). Strong consistency of least squares estimates in multiple regression II. J. Multivariate Anal. 9, 343–361.

    Article  MathSciNet  MATH  Google Scholar 

  • Loève, M. (1977). Probability theory (4th ed.) Springer, Berlin, New York.

    MATH  Google Scholar 

  • Mathieu, J.R. (1981). Tests of χ2 in the generalized linear model. Math. Operationsforsch Statist. Ser. Statist. 12, 509–527.

    MathSciNet  MATH  Google Scholar 

  • McCullagh, P. and Nelder, J.A. (1983). Generalized linear models. Chapman and Hall, London.

    MATH  Google Scholar 

  • Nordberg, L. (1980). Asymptotic normality of maximum likelihood estimators based on independent, unequally distributed observations in exponential family models. Scand. J. Statist. 7, 27–32.

    MathSciNet  Google Scholar 

  • Silvapulle, M.J. (1981). On the existence of maximum likelihood estimators for the binomial response models. J.R. Statist. Soc. B43, 310–313.

    MathSciNet  MATH  Google Scholar 

  • Wedderburn, R.W.M. (1976). On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models, Biometrika 63, 27–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrmeir, L., Kaufmann, H. Asymptotic inference in discrete response models. Statistische Hefte 27, 179–205 (1986). https://doi.org/10.1007/BF02932567

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932567

Keywords

Navigation