Skip to main content
Log in

Pseudo minimum translational distance between convex polyhedra (II)

Robot collision-free path planning

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

By using the pseudo minimum translational distance between convex objects, this paper presents two algorithms for robot path planning. First, an analytically tractable potential field is defined in the robot configuration space, and the concept, of virtual obstacles is introduced and incorporated in the path planner to handle the local minima of the potential function. Second, based on the Lipschitz continuity and differentiability of the pseudo minimum translational distance, the flexible-trajectory approach is implemented. Simulation examples are given to show the effectiveness and efficiency of the path planners for both mobile robots and manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latombe, J. C., Robot Motion Planning, Kluwer: Academic Publishers, 1991.

  2. Hwang, Y. K., Ahuja, N., Gross motion planning—A survey, ACM Computer Survey, 1992, 24(3): 219–292.

    Article  Google Scholar 

  3. Lozano-Perez, T., Spatial planning: A configuration space approach, IEEE Trans. Computers, 1983, 32 (2): 108–120.

    Article  MATH  MathSciNet  Google Scholar 

  4. Brooks, R. A., Lozano-Perez, T., A subdivision algorithm in configuration space for findpath with rotation, IEEE Trans. Systems, Man Cybernetics, 1985, 15(2): 224–233.

    Google Scholar 

  5. Barraquand, J., Latombe, J. C., Robot motion planning: A distributed representation approach, Int. J. Robotics Research, 1991, 10(6): 628–649.

    Article  Google Scholar 

  6. Canny, J. F., The Complexity of Robot Motion Planning, Cambridge: MIT Press, 1988.

    Google Scholar 

  7. Gilbert, E. G., Johnson, D. W., Distance functions and their application to robot path planning in the presence of obstacles, IEEE J. Robotics Automation, 1985, 1 (1): 21–30.

    Google Scholar 

  8. Chen, P. C., Hwang, Y. K., SANDROS: A dynamic graph search algorithm for motion planning, IEEE Trans. Robotics Automation, 1998, 14 (3): 390–403.

    Article  Google Scholar 

  9. Laumond, J. P., Jacobs, P., Taix, M. et al., A motion planner for nonholonomic mobile robots, IEEE Trans. Robotics Automation, RA-10, 1994.

  10. Khatib, O., Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robotics Research, 1986, 5 (1): 90–98.

    Article  MathSciNet  Google Scholar 

  11. Hwang, Y. K., Ahuja, N., Potential field approach to path planning, IEEE Trans. Robotics Automation, 1992, 8 (1): 23–32.

    Article  Google Scholar 

  12. Chuang, J. H., Potential-based modeling of three-dimensional workspace for obstacle avoidance, IEEE Trans. Robotics Automation, 1998, 14(5): 778–785.

    Article  MathSciNet  Google Scholar 

  13. Khosla, P., Volpe, R., Superquadric artificial potentials for obstacle avoidance and approach, in Proc. IEEE Int. Conf. Robotics Automation, 1988, 1778–1784.

  14. Koditschek, D. E., Exact robot navigation by means of potential functions: Some topological considerations, In Proc. IEEE Int. Conf. Robotics Automation, 1987, 1–6.

  15. Buckley, C. E., A foundation for the flexible-trajectory approach to numeric path planning, Int. J. Robotics Research, 1989, 8 (3): 44–64.

    Article  Google Scholar 

  16. Zhu, X. Y., Zhu, L. M., Zhong, B. L., Robot collision-free path planning utilizing gauge function, Science in China, Series E, 1997, 40 (5): 546–552.

    MATH  MathSciNet  Google Scholar 

  17. Xiong, Y. L., Ding, H., General criterion and control strategy of collision-free movement for manipulators, Int. J. Robotics & Automation, 1989, 4(2): 75–80.

    Google Scholar 

  18. Zhu, X. Y., Ding, H., Xiong, Y. L., Pseudo minimum translational distance between convex polyhedra (I)—Definition and properties, Science in China, Series E, 2001, 44(2): 216.

    MATH  MathSciNet  Google Scholar 

  19. Yuan, Y. X., Sun, W. Y., Theory and Methodology of Optimization (in Chinese), Beijing: Academic Press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Ding, H. & Xiong, Y. Pseudo minimum translational distance between convex polyhedra (II). Sci. China Ser. E-Technol. Sci. 44, 337–344 (2001). https://doi.org/10.1007/BF02916684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916684

Keywords

Navigation