Skip to main content
Log in

Lead transport in IEC-6 intestinal epithelial cells

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study evaluated the use of IEC-6 cells as a model for studying lead (Pb) transport by intestinal epithelial cells (IECs) and examined potential transport mechanisms for Pb uptake and extrusion. Pb accumulation in IEC-6 cells exposed to 5 and 10 μM Pb for up to 60 min was time- and dose-dependent. Reduction of incubation temperature significantly reduced the total cellular Pb content of IEC-6 cells. Simultaneous exposure of cells to zinc (Zn) and Pb resulted in decreased total cellular Pb contents compared to total cellular Pb contents of cells exposed to Pb only. IEC-6 cells treated with ouabain (1 mM) or sodium azide (1 mM) and 5 μM Pb accumulated more Pb than cells exposed to Pb only. Cells treated withp-chloromercuribenzensulfonic acid (50 μM),p-chloromercuribenzoic acid (50 μM), or iodoacetimide (50 μM) accumulated less Pb than cells treated with Pb only. We conclude that Pb uptake by IEC-6 cells depends on the extracellular Pb concentration. Our data suggest that the mechanism of Pb uptake by IECs is complex, and that Pb transport in IEC-6 cells is time- and temperature-dependent, involves sulfhydryl groups, and is decreased by the presence of Zn. Extrusion of Pb is at least partially dependent on metabolic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Barton, Active transport of lead-210 by everted segments of rat duodenum,Am. J. Physiol.,247, G193-G198 (1984).

    PubMed  CAS  Google Scholar 

  2. J. A. Blair, I. P. L. Coleman, and M. E. Hilburn, The transport of the lead cation across the intestinal membrane,J. Physiol. 286, 343–350 (1978).

    Google Scholar 

  3. K. A. Hussein, S. B. Coghill, G. Milne, and D. Hopwood, The uptake of lead by small intestine, colon and gallbladder of the guinea pig in vivo,Histochemistry 81, 591–596 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. G. M. Nichols, A. R. Pearce, X. Alverez, N. K. Bibb, K. Y. Nichols, C. B. Alfred, and J. Glass, The mechanisms of nonheme iron uptake determined in IEC-6 rat intestinal cells,J. Nutr. 122, 945–952 (1992).

    PubMed  CAS  Google Scholar 

  5. I. R. Sanderson, and Y. He, Nucleotide uptake and transport by intestinal epithelial cells,J. Nutr. 124, 131S-137S (1994).

    PubMed  CAS  Google Scholar 

  6. Y. He, I. R. Sanderson, and W. A. Walker, Uptake, transport, and metabolism of exogenous nucleosides in intestinal epithelial cell cultures,J. Nutr. 124, 1942–1949 (1994).

    PubMed  CAS  Google Scholar 

  7. S. A. McCormack, and L. R. Johnson, Putrescine uptake and release by a normal rat small intestinal crypt cell line, IEC-6,Exp. Cell. Res. 193, 241–252 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. J. L. Scemama, V. Grabie, and E. R. Seidel, Characterization of univectorial polyamine transport in duodenal crypt cell line,Am. J. Physiol. 265, G851-G856 (1993).

    PubMed  CAS  Google Scholar 

  9. K. Inui, A. Quaroni, L. G. Tillotson, and K. J. Isselbacher, Amino acid and hexose transport by cultured crypt cells from rat small intestine,Am. J. Physiol. 239, C190-C196 (1980).

    PubMed  CAS  Google Scholar 

  10. A. Quaroni, J. Wands, R. L. Trelstad, and K. J. Isselbacher, Epithelioid cell cultures from rat small intestine,J. Cell. Biol. 80, 248–265 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. C. W. Levenson, N. F. Shay, J. M. Hempe, and R. J. Cousins, Expression of cysteinerich intestinal protein in rat intestine and transfected cells is not zinc dependent,J. Nutr. 124, 13–17 (1994).

    PubMed  CAS  Google Scholar 

  12. C. A. Drew, I. Spence, and G. A. R. Johnston, Effects of lead salts on the uptake, release, and binding of γ-aminobutyric acid: The importance of buffer composition,J. Neurochem. 52, 433–440 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. F. Tacnet, D. W. Watkins, and P. Ripoche, Studies of zinc transport into brush-border membrane vesicles isolated from pig small intestine,Biochim. Biophys. Acta 1024, 323–330 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. C. S. Fullmer, S. Edelstein, and R. H. Wassermann, Lead-binding properties of intestinal calcium-binding proteins,J. Biol. Chem. 260, 6816–6819 (1985).

    PubMed  CAS  Google Scholar 

  15. M. E. Conrad, J. N. Umbreit, E. G. Moore, and C. R. Rodning, Newly identified iron-binding protein in human duodenal mucosa,Blood 79, 244–247 (1992).

    PubMed  CAS  Google Scholar 

  16. D. J. Bobilya, M. Briske-Anderson, and P. G. Reeves, Zinc transport into endothelial cells is a facilitated process,J. Cell. Physiol. 151, 1–7 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. E. C. Foulkes, Further findings on the mechanism of cadmium uptake by intestinal mucosal cells (step 1 of Cd absorption),Toxicology 70, 261–270 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. T. J. B. Simons, Passive transport and binding of lead by human red blood cells,J. Physiol. 378, 267–286 (1986).

    PubMed  CAS  Google Scholar 

  19. M. E. Conrad, and J. C. Barton, Factors affecting the absorption and excretion of lead in the rat,Gastroenterology 74, 731–740 (1978).

    PubMed  CAS  Google Scholar 

  20. F. L. Cerklewski, and R. M. Forbes, Influence of dietary zinc on lead toxicity in rats,J. Nutr. 106, 689–696 (1976).

    PubMed  CAS  Google Scholar 

  21. M. C. Rodriguez-Yoldi, J. E. Mesonero, and M. C. Rodriguez-Yoldi, Effect of zinc on aminopeptidaseN activity and L-threonine transport in rabbit jejunum,Biol. Trace Element Res. 53, 213–223 (1996).

    Article  CAS  Google Scholar 

  22. R. H. Wasserman and C. S. Fullmer, Vitamin D and intestinal calcium transport: Facts, speculations and hypothesis,J. Nutr. 125, 1971S-1979S (1995).

    PubMed  CAS  Google Scholar 

  23. E. D. Harris, Menkes' disease: Perspective and update on a fetal copper disorder,Nutr. Rev. 51, 235–245 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. P. Oestreicher, and R. J. Cousins, Zinc uptake by basolated membrane vesicles from rat small intestine,J. Nutr. 119, 639–646 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekaney, C.M., Harris, E.D., Bratton, G.R. et al. Lead transport in IEC-6 intestinal epithelial cells. Biol Trace Elem Res 58, 13–24 (1997). https://doi.org/10.1007/BF02910662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02910662

Index Entries

Navigation