Skip to main content
Log in

The frequencies of micronuclei induced by cisplatin in newborn rat astrocytes are increased by 50-Hz, 7.5- and 10-mT electromagnetic fields

  • Original Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Objectives

Epidemiological studies have suggested that exposure to environmental and occupational electromagnetic fields (EMFs) contribute to the induction of brain tumors, leukemia, and other neoplasms. The aim of this study was to investigate the genotoxic effects of exposure to 50-Hz EMFs. and of co-exposure to cisplatin, a mutagen and carcinogen, and 50-Hz EMFs, using an in vivo newborn rat astrocyte micronucleus assay.

Methods

Three day-old male Sprague-Dawley rats were co-exposed to 50-Hz EMFs and 1.25 or 2.5 mg/kg of cisplatin. Brain cells were dissociated into single cells and cultured for 96 hours, then stained with acridine orange and an antibody against glial fibrillary acidic protein. The frequency of micronucleated astrocytes was counted with a fluorescent microscope.

Results

The frequency of micronuclei was not increased in rat astrocytes exposed to EMFs alone. However, the frequencies of micronuclei in co-exposure to 2.5 mg/kg cisplatin and EMFs (7.5- and 10-mT) were significantly increased, compared with those in exposure to 2.5 mg/kg cisplatin alone (sham-exposure, 0-mT EMFs) for 72 hours (p<0.01).

Conclusion

Exposure to EMFs alone did not have a genotoxic effect but co-exposure to EMFs increased the genotoxic activity induced by cisplatin. Our findings suggest that EMFs enhance the genotoxic effects of cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller RD, Neuberger JS, Gerald KB. Brain cancer and leukemia and exposure to power-frequency (50- to 60-Hz) electric and magnetic fields. Epedemiol Rev. 1997; 19: 273–293.

    CAS  Google Scholar 

  2. Kheifets LI. Electric and magnetic field exposure and brain cancer: a review. Bioelectromagnetics. 2001; Sup 5: S120-S131.

    Article  PubMed  Google Scholar 

  3. McCann J, Dietrich F, Raffery C, Martin A. A critical review of the genotoxic potential of electric and magnetic fields. Mutat Res. 1993; 297: 61–95.

    PubMed  CAS  Google Scholar 

  4. McCann J, Dietrich F, Raffery C. The genotoxic potential of electric and magnetic fields: an update. Mutat Res. 1998; 411: 45–86.

    Article  PubMed  CAS  Google Scholar 

  5. Heddle LA, Hite M, Kierkhart B, Mavourin K, MacGregor JT, Newell GW, Salamone MF. The induction of micronuclei as a measure of genotoxicity, A report of the US Environmental Protection Agency Gene-Tox Program. Mutat Res. 1983; 123: 61–118.

    PubMed  CAS  Google Scholar 

  6. Toga W, Suzuki Y, Shimizu H. In vivo micronuclei test in rat newborn astrocytes. 8th International Conference on Environmental Mutagens. Shizuoka, October, 2001. Mutat Res. 2001; 483 (Suppl. 1): S162.

    Google Scholar 

  7. Miyakoshi Y, Suzuki Y, Ooida M, Takahashi A, Tsukui M. Micronucleus test using cultured new born rat astrocytes. Ind Health. 1999; 37: 95–102.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki Y, Shimizu H, Kim SU. Induction of micronucleus in NSC19 motoneuron cell line by genotoxic chemicals. Neuro Toxicol. 1997; 18: 325–330.

    CAS  Google Scholar 

  9. Kastenbaum MA, Bowman KO. Tables for determining the statistical significance of mutation frequencies. Mutat Res. 1970; 9: 527–549.

    PubMed  CAS  Google Scholar 

  10. Loscher W, Mevissen M, Lehmacher W, Stamm A. Tumor promotion in a breast cancer model by exposure to a weak alternating magnetic field. Cancer Lett. 1993; 71: 75–81.

    Article  PubMed  CAS  Google Scholar 

  11. Thun-Battersby S, Mevissen M, Loscher W. Exposure of Sprague-Dawley rats to a 50-Hertz, 100-μTesla magnetic field for 27 weeks facilitates mammary tumorgenesis in the 7, 12-dimethylbenz (a) anthracene model of breast cancer. Cancer Res. 1999; 59: 3627–3633.

    PubMed  CAS  Google Scholar 

  12. Mevissen M, Kietzmann M, Loscher W.In vivo exposure of rats to a weak alterinating magnetic field increases ornithine decarboxylase activity in the mammary gland by a similar extent as the carcinogen DMBA. Cancer Lett. 1995; 90: 207–214.

    Article  PubMed  CAS  Google Scholar 

  13. Wei M, Guizzetti M, Yost M, Costa LG. Exposure to 60-Hz magnetic fields and proliferation of human astrocytoma cellsin vitro. Toxicol Appl Pharmacol. 2000; 162: 166–176.

    Article  PubMed  CAS  Google Scholar 

  14. Ooida M, Miyakoshi Y, Tsukui M, Liu D, Asanuma K, Suzuki Y.In vitro micronucleus test for six chemicals using cultured rat astrocytes. Environmental Sciences. 2000; 7: 57–69.

    CAS  Google Scholar 

  15. Sakaba H, Liu D, Tukui M, Asnuma K, Takahashi A, Suzuki Y. Micronucleus test with a metabolic activation system and cultured astrocytes. Jikeikai Med J. 2000; 47: 131–138.

    CAS  Google Scholar 

  16. Rozenxweig M, von Hoff DD, Slavik M, Muggia FM.Cis-diamminedichloroplatinum (II) a new aniticancer drug. Ann Intern Med. 1977; 86: 803–812.

    Google Scholar 

  17. Loehrer PJ. Diagnosis and treatment, drugs five years later. Ann Intern Med. 1984; 100: 704–713.

    PubMed  CAS  Google Scholar 

  18. Benedict WF, Baker RL, Haroun L, Choi E, Ames BN, Mutagenicity and cancer chemotherapeutic agents in the Salmonell-microsome test. Cancer Res. 1977; 37: 2209–2213.

    PubMed  CAS  Google Scholar 

  19. Rosenberg B. Fundamental studies with cisplatin. Cancer. 1985; 55: 2303–2316.

    Article  PubMed  CAS  Google Scholar 

  20. Beck DJ, Brubaker RR. Mutagenicity properties of cisplatinum (II) diamminedichloride in E. coli. Mutat Res. 1975; 66: 181–189.

    Google Scholar 

  21. Turnbull D, Popescu NC, DiPaolo JA, Mythr BC. cis-Platinum (II) diammine dichloride causes mutation, transformation and sister-chromatid exchanges in cultured mammalian cells. Mutat Res. 1979; 66: 267–275.

    Article  PubMed  CAS  Google Scholar 

  22. Pleskova I, Blasko M, Siracky J. Chromosomal aberrations, sister chromatid exchange (SCEs) and micronuclei induction with three platinum compounds (cis-DDP, CHIP, CBDCA) in V79 cells in vitro. Neoplasma. 1984; 31: 655–659.

    PubMed  CAS  Google Scholar 

  23. Adey WR. Biological effects of electromagnetic fields. J Cell Biochem. 1993; 51: 410–416.

    PubMed  CAS  Google Scholar 

  24. Frey AH. Electromagnetic field interactions with biological systems. FASEB J. 1993; 7: 272–281.

    PubMed  CAS  Google Scholar 

  25. Koifman S. Electromagnetic fields—a cancer promoter? Med Hypotheses. 1993; 41: 23–27.

    Article  PubMed  CAS  Google Scholar 

  26. Loscher W, Mevissen M. Animal studies on the role of 50/60 Hertz magnetic fields in carcinogenesis. Life Sci. 1994; 54: 1531–1543.

    Article  PubMed  CAS  Google Scholar 

  27. Reiter RJ. Static and extremely low frequency electromagnetic field exposure—reported effects on the circardian production of melatonin. J Cell Biochem. 1993; 51: 394–403.

    PubMed  CAS  Google Scholar 

  28. Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signalin. FASEB J. 1992; 6: 3177–3185.

    PubMed  CAS  Google Scholar 

  29. Repacholi MH, Greenbaum B. Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics. 1999; 20: 133–160.

    Article  PubMed  CAS  Google Scholar 

  30. Schernhammer ES, Schulmeister K. Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer. 2004; 90: 941–943.

    Article  PubMed  CAS  Google Scholar 

  31. Stevens RG, Davis S, Thomas DB, Anderson LE, Wilson BW. Electric power, pineal function, and the risk of breast cancer. FASEB J. 1992; 6: 853–860.

    PubMed  CAS  Google Scholar 

  32. Karasek M, Lerchl A. Melatonin and magnetic fields. Neuroendocrinol Lett. 2002; 23 (Suppl 1): 84–87.

    PubMed  CAS  Google Scholar 

  33. Loscher W, Liburdy RP. Animal and cellular studies on carcinogenesis effects of low frequency (50/60-Hz) magnetic fields. Mutat Res. 1998; 410: 185–220.

    Article  PubMed  CAS  Google Scholar 

  34. Phillip JL. Effects of electromagnetic field exposure on gene transcription. J Cell Biochem. 1993; 51: 381–386.

    Google Scholar 

  35. Lin H, Bland M, Rossol-Haseroth K, Goodman R. Regulating genes with electromagnetic response elements. J Cell Biochem. 2001; 81: 143–148.

    Article  PubMed  CAS  Google Scholar 

  36. Marcu KB, Bossome SA, Patel AJ. MYC function and regulation. Annu Rev Biochem. 1992; 61: 809–860.

    Article  PubMed  CAS  Google Scholar 

  37. Tofani S, Barone M, Berardelli M, et al. Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma. But not of cyclophosphamide against B16 melanotic melanoma. Pharmacol Res. 2003; 48: 83–90.

    PubMed  CAS  Google Scholar 

  38. Shimizu H, Akiyama M, Suzuki Y, Hayashi K. The effects of magnetic field on mutagenic activity. Mutat Res. 1989; 16: 377.

    Google Scholar 

  39. Okonogi H, Nakagawa M, Tsuji Y. The effects of a 4.7 tesla static magnetic field on the frequency of micronucleated cells induced by mitomycin C. Tohoku J Exp Med. 1996; 180: 209–215.

    Article  PubMed  CAS  Google Scholar 

  40. Tsuji Y, Nakagawa M, Suzuki Y. Five-tesla static magnetic fields suppress food and water consumption and weight gain in mice. Ind Health. 1996; 34: 347–357.

    Article  PubMed  CAS  Google Scholar 

  41. Satoh M, Tsuji Y, Watanabe Y, Okonogi H, Suzuki Y, Nakagawa M, Shimizu H. Metallothionein content increased in the liver of mice exposed to magnetic fields. Arch Toxicol. 1996; 70: 315–318.

    Article  PubMed  CAS  Google Scholar 

  42. Watanabe Y, Nakagawa M, Miyakoshi Y. Enhancement of lipid peroxidation in the liver mice exposed to magnetic fields. Ind Health. 1997; 35: 285–290.

    Article  PubMed  CAS  Google Scholar 

  43. Suzuki Y, Ikehata M, Nakamura K, Nishioka M, Asanuma K, Koana T, Shimizu H. Induction of micronuclei in mice exposed to static magnetic fields. Mutagenesis. 2001; 16: 499–501.

    Article  PubMed  CAS  Google Scholar 

  44. World Health Organization International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans, volume 80, Non-ionizing radiation, part 1: static and extremely low-frequency (ELF) electric and magnetic fields. Lyon France; IARC Press; 2002. p. 331–338.

    Google Scholar 

  45. World Health Organization International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans, volume 80, Non-ionizing radiation, part I: static and extremely low-frequency (ELF) electric and magnetic fields. Lyon France: IARC Press; 2002. p. 51–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Miyakoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyakoshi, Y., Yoshioka, H., Toyama, Y. et al. The frequencies of micronuclei induced by cisplatin in newborn rat astrocytes are increased by 50-Hz, 7.5- and 10-mT electromagnetic fields. Environ Health Prev Med 10, 138–143 (2005). https://doi.org/10.1007/BF02900806

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02900806

Key words

Navigation