Skip to main content
Log in

Desmin-positive stellate cells associated with angiogenesis in a tumour and non-tumour system

  • Published:
Virchows Archiv B

Summary

The angiogenesis induced after implantation of fragments of the Walker 256 carcinoma was compared with the angiogenesis following implantation of different amounts of Indian ink. Morphologically and chronologically the tumour system showed no difference from the Indian ink system, provided sufficient amounts of ink were implanted. Both systems were characterized by significant macrophage infiltration. The vascular development, which was clearly concentrated in a dense rim around the tumour, remained present when the tumour enlarged, suggesting an acquisition of vasculature by the tumour through vessel incorporation and not vessel ingrowth. Initially, scattered desmin-positive cells, in contact or encircled by collagen IV, were found in the developing angiogenic rim. Later many desmin-positive cells were found around vessels and could be identified by electron microscopy as pericytes. They exhibited close local contacts with endothelial cells. After incorporation of the peritumour vascular rim into the tumour the number of pericytes decreased and their shape became flattened and elongated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altmannsberger M, Osborn M, Schauer A, Weber K (1981) Antibodies to different intermediate filament proteins. Cell type-specific markers on paraffin-embedded human tissues. Lab Invest 45:427–434

    PubMed  CAS  Google Scholar 

  • Altmannsberger M, Weber K, Droste R, Osborn M (1985) Desmin is a specific marker for rhabdomyosarcomas of human and rat origin. Am J Pathol 118:85–95

    PubMed  CAS  Google Scholar 

  • Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    Article  PubMed  CAS  Google Scholar 

  • Bär T, Wolff JR (1972) The formation of capillary basement membranes during internal vascularization of the rat’s cerebral cortex. Z Zeilforsch 133:231–248

    Article  Google Scholar 

  • Broers JLV, Carney DN, Klein Rot M, Schaart G, Lane EB, Vooys GP, Ramaekers FCS (1986) Intermediate filament proteins in classic and variant types of small lung carcinoma cell lines: a biochemical and immunochemical analysis using a panel of monoclonal and polyclonal antibodies. J Cell Sci 83:37–60

    PubMed  CAS  Google Scholar 

  • Cavallo T, Sade R, Folkman J, Cotran RS (1973) Ultrastructural autoradiographic studies of the early vasoproliferative response in tumor angiogenesis. Am J Pathol 70:345–362

    PubMed  CAS  Google Scholar 

  • Crocker DJ, Murad TM, Geer JC (1970) Role of the pericyte in wound healing. An ultrastructural study. Exp Mol Pathol 13:51–65

    Article  PubMed  CAS  Google Scholar 

  • Davies PF (1986) Vascular cell interactions with special reference to the pathogenesis of atherosclerosis. Lab Invest 55:5–24

    PubMed  CAS  Google Scholar 

  • Debus E, Weber K, Osborn M (1983) Monoclonal antibodies to desmin, the muscle-specific intermediate filament protein. EMBO J 2:2305–2312

    PubMed  CAS  Google Scholar 

  • Folkman J (1976) The vascularization of tumors. Sci Am 234:58–73

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556

    Article  PubMed  CAS  Google Scholar 

  • Form DM, Pratt BM, Madri JA (1986) Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Lab Invest 55:521–530

    PubMed  CAS  Google Scholar 

  • Fujimoto T, Singer SJ (1986) Immunocytochemical studies of endothelial cells in vivo. I. The presence of desmin only, or of desmin plus vimentin, or vimentin only, in the endothelial cells of different capillaries of the adult chicken. J Cell Biol 103:2775–2786

    Article  PubMed  CAS  Google Scholar 

  • Furcht LT (1986) Critical factors controlling angiogenesis: cell products, cell matrix and growth factors. Lab Invest 55:505–509

    PubMed  CAS  Google Scholar 

  • Gabbiani G, Schmid E, Winter S, Chaponnier C, de Chastonay C, Vandekerckhove J, Wever K, Franke WW (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci USA 78:298–302

    Article  PubMed  CAS  Google Scholar 

  • Krylova NV (1968) Characteristics of microcirculation in experimental tumours. Bibl Anat 10:301–303

    Google Scholar 

  • Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–255

    Article  PubMed  CAS  Google Scholar 

  • Leader M, Collins M, Patel J, Henry K (1987) Desmin: its value as a marker of muscle derived tumours using a commercial antibody. Virchows Arch [Pathol Anat] 411:345–349

    Article  CAS  Google Scholar 

  • Le Beux YJ, Willemot J (1978) Actinand myosin-like filaments in rat brain pericytes. Anat Rec 190:811–826

    Article  PubMed  Google Scholar 

  • Maxwell MH (1977) Two rapid and simple methods used for the removal of resins from 1 μm thick epoxy sections. J Microsc 112:253–255

    Google Scholar 

  • Nunnery EW, Kahn LB, Reddick RL, Lipper S (1981) Hemangiopericytoma: A light microscopic and ultrastructural study. Cancer 47:906–914

    Article  PubMed  CAS  Google Scholar 

  • Orlidge A, D’Amore PA (1986) Pericyte and smooth muscle cell modulation of endothelial cell proliferation. J Cell Biol 103, part 2, 471a

  • Osborn M, Weber K (1983) Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest 48:372–394

    PubMed  CAS  Google Scholar 

  • Polverini PJ, Leibovich SJ (1984) Induction of neovascularization in vivo and endothelial proliferation in vitro by tumorassociated macrophages. Lab Invest 51:635–642

    PubMed  CAS  Google Scholar 

  • Polverini PJ, Cotran RS, Gimbrone MA, Unanue ER (1977) Activated macrophages induce vascular proliferation. Nature 269:804–806

    Article  PubMed  CAS  Google Scholar 

  • Ramaekers FCS, Puts JJG, Kant A, Moesker O, Jap PHK, Vooys GP (1982) Use of Antibodies to intermediate filaments in the characterization of human tumors. Cold Spring Harbor Symp Quant Biol 46:331–339

    PubMed  Google Scholar 

  • Ramaekers FCS, Verheyen RHM, Moesker O, Kant A, Vooys GP, Herman CJ (1983) Mesodermal mixed tumor. Diagnosis by analysis of intermediate filament proteins. Am J Surg Pathol 7:381–385

    Article  PubMed  CAS  Google Scholar 

  • Reinhold HS, van den Berg-Blok A (1984) Factors influencing the neovascularization of experimental tumours. Biorheology 21:493–501

    PubMed  CAS  Google Scholar 

  • Rhodin JAG (1974) Cardiovascular system. In: Histology: a text and atlas. Oxford University Press, New York, pp 331–370

    Google Scholar 

  • Roholl PJM, de Jong ASH, Ramaekers FCS (1986) Diagnostic markers in soft tissue tumors. In:van Oosterom A, van Unnik J (eds). Management of soft tissue and bone sarcomas. Raven Press, New York, pp 35–64

    Google Scholar 

  • Rouget C (1873) Mémoire sur le développement, la structure et les propriétés physiologiques des capillaires sanguins et lymphatiques. Arch Physiol Norm Pathol 5:603–663

    Google Scholar 

  • Schor AM, Schor SL (1983) Tumour angiogenesis. J Pathol 141:385–413

    Article  PubMed  CAS  Google Scholar 

  • Skalli O, Gabbiani G (1986) The biology of the myofibroblast in relation to wound contraction and fibrocontractive diseases. In: Clark R, Henson P (eds) The molecular and cellular biology of wound repair. Plenum Publ Coop, New York, pp 3–36

    Google Scholar 

  • Somlyo AP, Somlyo AV (1968) Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev 20:197–272

    PubMed  CAS  Google Scholar 

  • Staubesand J, Andres KH (1953) Grafische Rekonstruktion zur räumlichen Darstellung präterminaler Gefäße und intravasaler Besonderheiten. Mikroskopie 8:111

    PubMed  CAS  Google Scholar 

  • Sternberger LA (1979) The unlabeled antibody method: Hormone receptor, Golgi-like and dual color immunocytochemistry. J Histochem Cytochem 27:1658–1659

    PubMed  CAS  Google Scholar 

  • Suzuki M, Hori K, Abe I, Saito S, Sato H (1984) Functional characterization of the microcirculation in tumors. Cancer Metastas Rev 3:115–126

    Article  CAS  Google Scholar 

  • Thompson WD, Shiach KJ, Fraser RA, McIntosh LC, Simpson JG (1987) Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth. J Pathology 151:323–332

    Article  CAS  Google Scholar 

  • Van Cauwenberge D, Pierard GE, Foidart JM, Lapiere CM (1983) Immunohistochemical localization of laminin, type IV and type V collagen in basal cell carcinoma. Br J Dermatol 108:163–170

    Article  PubMed  Google Scholar 

  • Warren BA (1970) The ultrastructure of the microcirculation at the advancing edge of Walker 256 carcinoma. Microvasc Res 2:443–453

    Article  PubMed  CAS  Google Scholar 

  • Warren BA (1979) The vascular morphology of tumors. In: Peterson H-I (ed) Tumor blood circulation. CRC Press, Florida, pp 1–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this work was supported by grant nr. 3.0019.85 from the N.F.G.W.O.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhoeven, D., Buyssens, N. Desmin-positive stellate cells associated with angiogenesis in a tumour and non-tumour system. Virchows Archiv B Cell Pathol 54, 263–272 (1987). https://doi.org/10.1007/BF02899222

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899222

Key words

Navigation