Skip to main content
Log in

Functional substitution of coordination polyhedron in crystal structure of silicates

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

On the bases of the study of comparative crystal chemistry of silicates it has been concluded that the octahedra and square pyramids of Ti-0 and Zr-0 play functional role of tetrahedra of Si-0 in the construction of crystal structures. Therefore, those silicates may be named titano-and zircono-silicates. Because of the functional similarity of coordination polyhedra, the structures of cristobalite and feldspar have been compared with those of perovskite and garnet, respectively. As a new concept, the functional replacement of tetrahedra by octahedra and/or pyramids is defined by the authors of this paper for favorable comparison of relative crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farge, F., Coordination of Ti4+ in silicate glasses: A high-resolution XANES spectroscopy study at the Ti K edge, Amer. Mineral, 1997, 82:36–42.

    Google Scholar 

  2. Ye Danian, Zeng Rongshu, X-ray powder data of a high-titanium pyroxene in a high-titanium slag, in Studies of Petrolurgy(in Chinese) (ed. Institute of Geology, CAS), Beijing: Science Press, 1978, 128–132.

    Google Scholar 

  3. Hartmann, L., Can Ti4+ replace Si4+ in silicates? Mineral Mag., 1969, 37: 366–374

    Article  Google Scholar 

  4. Schropfer, I., Über den Einban von Titan in Diopsid, Neues Jahrb Mineral Monatsh, 1968, 14: 441–452.

    Google Scholar 

  5. Ma Zhesheng, Li Guowu, Shi Nicheng et al., Structure refinement of astrophyllite, Science in China, Ser. D, 2001, 44: 508–516.

    Article  Google Scholar 

  6. Guan, Y. X., Simonov, I., Belov, N. V., Crystal of bafertisite, Dokl. Akad. Nauk. SSSR, 1963, 149: 1416–1420.

    Google Scholar 

  7. Woodrow, P. J., Crystal structure of lamprophyllite, Nature, 1964, 204: 375–379.

    Article  Google Scholar 

  8. Semonov, V. I., Belov, N. V., The determination of the structure of seidozerite, Kristallografiya, 1959, 4: 163–169.

    Google Scholar 

  9. Khalilov, A. D., Mamedov, K. S., Makarov, E. S. et al., Crystal structure of murmanite, Dokl. Akad. Nauk. SSSR, 1965, 161: 1409–1413.

    Google Scholar 

  10. Shibaeva, R. P., Simonov, V. I., Belov, N. V., Crystal structure of Ca, Na, Zr, Ti silicate rosenbuschite Ca3.5Na2.5ZrTi, Mn, NbSi2O7F2O(O, F), Kristallografiya, 1963, 8: 506–510.

    Google Scholar 

  11. Chernov, A. N., Ilyukhin, V. V., Maksimov, B. A. et al., Crystal structure of inneite, Kristallografiya, 1971, 16: 87–94.

    Google Scholar 

  12. Raszvetaeva, R. K., Simonov, V. I., Belov, B. N., The crystal structure of lomonosovite Na2Ti2(Si2)7)(PO4)O2, Dokl. A.N. SSSR, 1971,197:81–90.

    Google Scholar 

  13. Ferraris, G., Mellini, M., Merlino, S., Polysomatism and the classification of mineral, Rend Soc. It Min. Petr., 1986, 41:181–193.

    Google Scholar 

  14. Ferraris, G., Ivaldi, G., Khomyakov, A. P., Bafertisite, a layer titanosilicate member of apolysomatic series including mica, Eu. J. Mineral, 1996, 8: 241–251.

    Google Scholar 

  15. Christiabsen, C. C., Makovicky, E., Johnsen, O., Homology andtypism in heterophyllosilicates: An alternative approach, N. Jb. Miner. Abh., 1999,175: 153–189.

    Google Scholar 

  16. Moore, P. B., Louisnathan, S. J., The crystal structure of fresnoite Ba2Ti0Si207, Zeit Krist, 1969, 130: 438–444.

    Google Scholar 

  17. Fischer, K.. Verfeinerung der Kristallstruktur von Benitoite BaTi[Si3O9], Zeit Krist, 1969, 129: 222–226.

    Google Scholar 

  18. Young, B. R., Hawkes, J. R., Merriman, R. J. et al., A new mineral from Rockall Island, Inverness-shire, Scotland, Minera. Mag., 1978,42:35–42.

    Article  Google Scholar 

  19. Blinov, V. A., Shumayatskaya, N. G,, Voronkov, A. A. et al., Refinement of the crystal structure ofwadeiteK2Zr[Si3O9] and its relationship to kindred structural type, Sov. Phys. Crystallogr., 1977, 22: 31–39

    Google Scholar 

  20. Fleet, S. G., The crystal structure of dalyite, Z. Kristallogr., 1965, 121:349–354.

    Google Scholar 

  21. Voronkov, A. A., Zhdanova, T. A., Pyatenko, Yu. A., Refinement of the structure of vlasovite Na2ZrSi4O11 and some characterstics of the composition and structure of the zircono-silicates, Sov. Phys. Crystallogr., 1974, 19: 152–159.

    Google Scholar 

  22. Krawchenko, S. M., Vlasova, E. W., Pinevic, N. G., Batisite-new mineral, DANSSR, 1960, 47: 539–546.

    Google Scholar 

  23. Peacor, D. R., Buerger, M. J., The determination and refinement of the structure of narsarsukite Na2TiOSi4O12. Amer. Mineral, 1962, 47: 539–545.

    Google Scholar 

  24. Ghose, S., Wan, C., Chao, G. Y., Petarasite, Na5Zr2Si6018(Cl,0H) · 2H20, A zeolite-type zirconosilicate, Can. Mineralogist, 1980, 18: 503–513.

    Google Scholar 

  25. Ilyushin, G. D., Voronkov, A. A., Ilyukhin, V. V. et al., Crystal structure of natural monoclinic catapleiite Na2ZrSi3O92H2O, Sov. Phys. Crystallogr., 1981, 26: 808.

    Google Scholar 

  26. Chao, G. Y., The structure of gaidonnayite, orthorhombic Na2ZrSi3O92H20, Can. Mineral, 1973, 12: 143–149.

    Google Scholar 

  27. Ilyushin, G. D., Voronkov, A. A., Nevskii, N. N. et al., Crystal structure of hilairite Na2ZrSi309 · 3H2O, Sov. Phys. Crystallogr., 1981, 26: 916–924.

    Google Scholar 

  28. Cannillo, E., Rossi, G., Ungaretti, L., The crystal structure of elpidite, Amer. Mineral, 1973, 58: 106–113.

    Google Scholar 

  29. LePage Y, Perault, G, Structure cristalline de la lemoynite (Na,K)2CaZr2Si10O265-6H2O, Can. Mineral, 1976, 14: 132- 140.

    Google Scholar 

  30. Kashaev, A.A., Sapozhnikov, A. N., Crystal structure of armstrongite, Sov. Phys. Crystallogr., 1978, 23: 539–549.

    Google Scholar 

  31. Khomyakov, A. P., Mineralogy of hyperagrpaitic alkaline rocks, Oxford: Clarendon Press, 1995.

    Google Scholar 

  32. Takeuchi, Y., Joswig, W., The structure of haradaite and a note on the Si-0 bond lengths in silicates, Miner. J. Sapporo, 1958, 2:311–319.

    Google Scholar 

  33. Buearger, M. J., The stuffed derivative of the silica structures, Amer. Mineral, 1954, 39: 600–612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danian Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, D., Pushcharovsky, D., Shi, N. et al. Functional substitution of coordination polyhedron in crystal structure of silicates. Sci. China Ser. D-Earth Sci. 45, 702–708 (2002). https://doi.org/10.1007/BF02878427

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02878427

Keywords

Navigation