Skip to main content
Log in

Nitrogen sources of seed plants and environmental influences affecting the nitrogen supply

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literature Cited

  1. Albrecht, W. A. 1920. Symbiotic nitrogen fixation as influenced by-nitrogen of the soil. Soil Sci.9: 275–319.

    Article  CAS  Google Scholar 

  2. — andDavis, F. L. 1929. Physiological importance of calcium in legume inoculation. Bot. Gaz.88: 310–321.

    Article  CAS  Google Scholar 

  3. — andHorner, G. M. 1935. Nitrogen fixation in soybeans as influenced by exchangeable calcium. Trans. Third Int. Congr. Soil Sci.1: 140–144.

    CAS  Google Scholar 

  4. Aleev, B. S. andMudretsova, K. A. 1937. Rol’ fitoplanktona v dinamike azota v vode “ tsvetuschago” vodeoma. Microbiologi1a6: 329–338.

    CAS  Google Scholar 

  5. Alicante, M. M. 1935. Nitrification in acid soils. Philippine Jour. Sci.58: 162–169.

    Google Scholar 

  6. Allen, O. N. 1949. Experiments in soil bacteriology. 122 pp.

  7. Allison, F. E. andLudwig, C. A. 1934. The cause of decreased nodule formation on legumes supplied with abundant combined nitrogen. Soil Sci.37: 431–443.

    Article  CAS  Google Scholar 

  8. —. 1935. Carbohydrate supply as a primary factor in legume symbiosis. Soil Sci.39: 123–143.

    Article  CAS  Google Scholar 

  9. —,Hoover, S. R. andMinor, F. W. 1942. Biochemical nitrogen fixation studies. IV. Experiments with excised legume nodules. Bot. Gaz.104: 63–71.

    Article  CAS  Google Scholar 

  10. —,Gaddy, V. L., Pinck, L. A. andArmiger, W. H. 1947.Azotobacter inoculation of crops. II. Effect on crops under greenhouse conditions. Soil Sci.64: 489–497.

    CAS  Google Scholar 

  11. Anderson, A. J. andThomas, M. P. 1946. Plant responses to molybdenum as a fertilizer. I. Molybdenum and symbiotic nitrogen fixation. Australia, Coun. Sci., India Res., Bull.198: 7–24.

    Google Scholar 

  12. Anderson, J. A. 1926. The influence of available nitrogen on the fermentation of cellulose in the soil. Soil Sci.21: 115–126.

    Article  CAS  Google Scholar 

  13. Anonymous. 1925. Soil studies at the Wisconsin Experiment Station. Wis. Agr. Exp. Sta., Bull 373: 41–51.

  14. Barritt, N. W. 1931. The liberation of elementary nitrogen by bacteria. Biochem. Jour.25: 1965–1972.

    CAS  Google Scholar 

  15. Barthel, C. 1926. --Kunna baljvaxbakterier i renkultur fixera atmosfäriskt kväve? Meddel. Centralanst. Försökväsendet Jordbruksomvad [Stockholm]308: 16.

    Google Scholar 

  16. — andBengtsson, N. 1926. --Bidrag till frågan om stallgödselkvävets nitrifikation i akerjorden. 5. Meddel. Centrananst. Försoksvävs. Jordbruksomar. [Stockholm]311: 1–16.

    Google Scholar 

  17. Bartholomew, R. P. 1932. Activity of nitrification processes in the fall and winter months. Jour. Am. Soc. Agron.24: 435–442.

    CAS  Google Scholar 

  18. Batham, H. N. andNigam, L. S. 1930. Periodicity of the nitrate content of soils. Soil Sci.29: 181–190.

    Article  CAS  Google Scholar 

  19. Baumgartel, T. andBihler, C. 1930. Kritische Experimental-studien zur Mikrobiologischen Bodenanalyse. (Ueber den Einfluss einseitiger Dauerdungung auf Vorkommen und Entwicklung vonAzotobacter chroococcum). Landwirtsch. Jahrb.71: 855–876.

    Google Scholar 

  20. Bear, F. E. andWorkman, A. C. 1919. The ammonia-fixing capacity of calcium sulfate. Soil Sci.7: 283–291.

    Article  CAS  Google Scholar 

  21. Beeson, K. C. 1941. The mineral composition of crops with particular reference to the soils in which they were grown. U. S. Dept. Agr., Misc. Pub. 369.

  22. Bennett, E. 1949. Fixation of ammonia by lignin. Soil Sci.68: 399–400.

    Article  CAS  Google Scholar 

  23. Berge, H. 1949. Bodenbiologische Studien der Nachkriegszeit. Naturwiss. Rundschau1949: 73–75.

    Google Scholar 

  24. Bershova, O. I. 1940. Dependence of the development of ammonifying bacteria on the bacteriophage in the soil. Mikrobiologichnii Zhurnal Akademiia Nauk URSR7: 97–117.

    CAS  Google Scholar 

  25. Bhaskaran, T. R. andPillai, S. C. 1937. Decomposition of cane molasses in soil and its bearing on soil fertility. Proc. Soc. Biol. Chemists [India]2: 33–34.

    CAS  Google Scholar 

  26. Bhat, J. V. andPalachios, G. 1948. Studies on the influence of some bacterial cultures in the nitrogen status of the soil. Jour. Univ. Bombay16: 15–26.

    Google Scholar 

  27. ——. 1949. Studies on the influence of some bacterial cultures in the nitrogen status of soil. IV. The influence ofAerobacter aerogenes in the nitrogen status of soil. Jour. Univ. Bombay17: 84–87.

    Google Scholar 

  28. Blinkov, G. N. 1948. --Vliianie reackii sredi na intensivnost azotifixacii i rost azotobaktera. Mikrobiologiia17: 48–53.

    Google Scholar 

  29. Bomecke, H. 1939. Beiträge zur Physiologie nitrofizierender Bakterien. Arch. Mikrobiol.10: 385–445.

    Article  CAS  Google Scholar 

  30. Bonner, J. 1950. Plant Biochemistry. 491 pp.

  31. Bortels, H. 1933. Kurze Motiz über die Katalyse der biologischen Stickstoffbindung. Zentralbl. Bakt. II. Abt.87: 476–477.

    Google Scholar 

  32. —. 1940. Über die Bedeutung des Molybdäns für stickstoffbindens Nostacaceen. Arch. Mikrobiol.11: 155–186.

    Article  CAS  Google Scholar 

  33. Bose, S. R. 1943. Fixation of atmospheric nitrogen by fungi. Sci. & Cult.8: 389.

    Google Scholar 

  34. Boswell, J. G. andGover, D. J. 1946. The microbiology of acid soils. 1. “Mor” bearingPinus sylvestris andBetula pubescens. New Phytol.45: 218–224.

    Article  Google Scholar 

  35. Bracken, A. F. 1940. Effect of various soil treatments on nitrates, soil moisture, and yield of winter wheat. Soil Sci.50: 175–188.

    Article  CAS  Google Scholar 

  36. — andGreaves, J. E. 1941. Losses of nitrogen and organic matter from dry-farm soils. Soil Sci.51: 1–15.

    Article  CAS  Google Scholar 

  37. Bray, R. H. 1945. Nitrate tests for soils and plant tissues. Soil Sci.60: 219–221.

    CAS  Google Scholar 

  38. Breed, R. S., Murray, E. G. D. andHitchens, A. P. 1948. Bergey’s manual of determinative bacteriology. Sixth Ed. 1387 pp.

  39. Brioux, C. andJouis, E. 1935. La nitrification dans les sols de limon des plateaux. Ann. Agron.5: 622–631.

    CAS  Google Scholar 

  40. Broadbent, F. E. andNorman, A. G. 1947. Some factors affecting the availability of the organic nitrogen in soil-a preliminary report. Soil Sci. Soc. Am., Proc.11: 264–267.

    Article  CAS  Google Scholar 

  41. Bruce, A. 1941. Periodicity of nitrification. II. Rubber area. III. Coconut area. Trop. Agr.96: 28–81.

    CAS  Google Scholar 

  42. Burema, S. J. andWieringa, K. T. 1942. Molybdenum as a growth factor ofAzotobacter chroococcum. Anatomie van Leeuwenhoek, Jour. Microbiol. & Serol.8: 123–133.

    Article  CAS  Google Scholar 

  43. Burk, D. andLineweaver, H. 1930. The influence of fixed nitrogen onAzotobacter. Jour. Bact.19: 389–414.

    CAS  Google Scholar 

  44. Burkhart, L. 1934. Metabolism of etiolated seedlings as affected by ammonium nutrition. Plant Physiol.9: 351–358.

    PubMed  CAS  Google Scholar 

  45. Burris, R. H. 1941. Failure of barley to fix molecular nitrogen (N15). Science94: 238–239.

    Article  PubMed  CAS  Google Scholar 

  46. —. 1942. Distribution of isotopic nitrogen inAzotobacter vinelandii. Jour. Biol. Chem.143: 509–517.

    CAS  Google Scholar 

  47. —,Eppling, F. J., Wahlin, H. B. andWilson, P. W. 1943. Studies of biological nitrogen fixation with isotopic nitrogen. Soil Sci. Am., Proc.7: 258–262.

    Article  CAS  Google Scholar 

  48. — andWilson, P. W. 1945. Biological nitrogen fixation. Ann. Rev. Biochem.14: 685–708.

    Article  CAS  Google Scholar 

  49. —. 1946. Ammonia as an intermediate in nitrogen fixation byAzotobacter. Jour. Bact.52: 505–512.

    CAS  Google Scholar 

  50. Carl, G. C. 1940. Some ecological conditions in a brackish lagoon. Ecology21: 65–74.

    Article  CAS  Google Scholar 

  51. Casas-Campillo, C. 1947a. Bacterias aerobias esporuladas con propiedades antagonistas paraRhizobium. Ciencia8: 108.

    Google Scholar 

  52. —. 1947b. Efecto antibiotico paraRhizobium de una fraction organica del suelo. Ciencia8: 168–171.

    Google Scholar 

  53. — andGuerrero, D. 1948. Inactivacion del bacteriofago deRhizobium meliloti por bacterias aerobias esporuladas. Ciencia8: 252–257.

    Google Scholar 

  54. Castelli, T. 1931. Développement symbiotique d’azoto bactéries et de clostrides azoto fixateurs sur las plaques de terre modelée. Soc. Int. Microbiol. Boll. Sez. Ital.3: 359–360.

    Google Scholar 

  55. Chaudhuri, H. 1940. Nitrogen fixation in the rice field soils of Bengal. Nature [London]145: 936–937.

    Article  CAS  Google Scholar 

  56. Chubarov, A. 1927. Process of nitrification under conditions of fallow tillage of soil and under natural conditions. Mem. Inst. Agron. Leningrade4: 3–20.

    Google Scholar 

  57. Clark, F. E. 1940. Notes on types of bacteria associated with plant roots. Trans. Kansas Acad. Sci.43: 75–84.

    Article  Google Scholar 

  58. Conn, H. J. 1948. The most abundant groups of bacteria in soil. Bact. Rev.12: 257–273.

    PubMed  CAS  Google Scholar 

  59. Corbet, A. S. 1935. Recent work on the biological and chemical aspects of nitrification. Ann. Appl. Biol.22: 416–419.

    Google Scholar 

  60. Cox, G. M. andMartin, W. P. 1937. Use of a discriminant function for differentiating soils with differentAzotobacter populations. Iowa State Coll. Jour. Sci.11: 323–332.

    Google Scholar 

  61. Craig, N. andGiraud, F. 1926. The reversion of nitrates in the soil under cultural conditions in Mauritius. Mauritius Dept. Agr., Sci. Ser. Bull.11: 1–19.

    Google Scholar 

  62. Cullinan, F. P. andBatjer, L. P. 1943. Nitrogen, phosphorus and potassium interrelationships in young peach and apple trees. Soil Sci.55: 49–60.

    Article  CAS  Google Scholar 

  63. Cultera, R. 1946a. Photochemical reactions of the oxidation-reduction of NH4+ and NO3ions. Gazz. Chim. Ital.76: 187–194.

    Google Scholar 

  64. —. 1946b. Arable soil in relation to the photochemical oxidation-reduction reactions of the ammonium and nitrate ions. Ann. Chim. Applicata36: 245–253.

    Google Scholar 

  65. Cutler, D. W. andBal, D. V. 1926. Influence of Protozoa on the process of nitrogen fixation byAzotobacter chroococcum. Ann. Appl. Biol.13: 516–534.

    Article  Google Scholar 

  66. —. 1930. Nitrifying bacteria. Nature [London]125: 168.

    Article  CAS  Google Scholar 

  67. Davis, J. F. 1944. Field observations regarding the value of root nodule bacteria. Jour. Am. Soc. Agron.36: 869–871.

    Google Scholar 

  68. De, P. K. andSulaiman, M. 1950. Fixation of nitrogen in rice soils by algae as influenced by crop, carbon dioxide, and inorganic substances. Soil Sci.70: 137–151.

    CAS  Google Scholar 

  69. Demolon, A. andBarbier, G. 1931. Influence de la constitution physique des sols sur l’allure des phénomènes microbiens dont ils sont le siege. Ann. Agron. [Paris]1: 531–535.

    Google Scholar 

  70. — andDunez, A. 1936. Nouvelles observations sur la bacteriophage et la fatigue des sols cultivés en luzerne. Ann. Agron. [Paris]6: 434–454.

    CAS  Google Scholar 

  71. —— 1940. Observations sur la nutrition azotée des Légumineuses. Compt. Rend. Acad. Sci. [Paris]210: 676–678.

    CAS  Google Scholar 

  72. Derx, H. G. 1950.Beijerinckia, a new genus of nitrogen-fixing bacteria occurring in tropical soils. Proc. Koninkl. Nederland. Akad. Wet.53: 140–147.

    CAS  Google Scholar 

  73. Desai, S. V. andFazal-ud-Din. 1936. The nature of nitrification in soil. Indian Jour. Agr. Sci.6: 777–783.

    CAS  Google Scholar 

  74. Dhar, N. R., Bhattacharya, A. K. andBiswas, N. N. 1933. Photonitrification in soil. Soil Sci.35: 281–284.

    Article  CAS  Google Scholar 

  75. —. 1934. Denitrification in sunlight. Nature [London]134: 572–573.

    Article  CAS  Google Scholar 

  76. — andTandon, S. P. 1936. Influence of temperature on nitrogen fixation byAzotobacter. Proc. Nat. Acad. Sci. [India]6: 35–39.

    CAS  Google Scholar 

  77. — andSeshacaryulu, E. V. 1936. Nitrogen fixation andAzotobacter count on the application of sugars to the soil. 2. Proc. Nat. Acad. Sci. [India]6: 244–251.

    CAS  Google Scholar 

  78. — andMukerji, S. K. 1936. Nitrogen fixation in soil with cellulosic substances, cow dung and fats. I. Proc. Nat. Acad. Sci. [India]6: 289–295.

    CAS  Google Scholar 

  79. ——. 1938. New aspects of nitrogen fixation and conservation in the soil. II. Jour. Indian Chem. Soc.15: 543–548.

    CAS  Google Scholar 

  80. — andSeshacharyulu, E. V. 1939. New aspects of nitrogen fixation and conservation in the soil. III. Influence of light on bacterial numbers and nitrogen fixation. Jour. Indian Chem. Soc.16: 463–476.

    CAS  Google Scholar 

  81. D’Oliveira, B. 1939. Can rusts fix nitrogen? Nature [London]144: 480.

    Article  CAS  Google Scholar 

  82. Dorosinskii, L. M. 1941. The effect of bacteriophage on the development of clover. Mikrobiologiia10: 208–214.

    CAS  Google Scholar 

  83. Drobkov, A. 1945. Effect of radioactive elements upon development of the root-nodule bacteria and upon the assimilation by them of the molecular nitrogen of the atmosphere. Compt. Rend. [Doklady] Acad. Sci. URSS49: 224–226.

    CAS  Google Scholar 

  84. Dufrenoy, J. 1940. The relation of boron to the root-nodules ofVicia faba. Growth4: 323–326.

    Google Scholar 

  85. Dykyj-Sajfertova, D. andDykyj, J. 1941. Influence of nitrogen and potassium on the structure and physiology of sugar beets. Agn. Bot.23: 164–177.

    Google Scholar 

  86. Efendieva, S. A. 1944. Ustanovlenie sasolennosti pochov pri pomoshchi azotobakternoiproby. Mikrobiologiia13: 147–154.

    CAS  Google Scholar 

  87. Efron, N. A. andMilova, I. E. 1941. The influence of nodule bacteria on sweet clover. Mikrobiologiia10: 456–460.

    CAS  Google Scholar 

  88. Emerson, F. W. 1935. An ecological reconnaissance in the White Sands, New Mexico. Ecology16: 226–233.

    Article  Google Scholar 

  89. Fedorov, M. V. 1945. Fixation of atmospheric nitrogen byAzotobacter as influenced by the substances reacting with the amino group of the catalyst. Compt. Rend. Acad. Sci. [U.R.S.S.]49: 675–678.

    CAS  Google Scholar 

  90. —. 1946a. Chemistry of fixation of atmospheric nitrogen byAzotobacter. The influence of narcotics (ethylurethan and diphenylurea) on the productivity of nitrogen fixation. Mikrobiologiia15: 23–29.

    CAS  Google Scholar 

  91. —. 1946b. Fixation of atmospheric nitrogen byAzotobacter as affected by substances reacting with the carboxyl radical of the catalyst. Compt. Rend. Acad. Sci. [U.R.S.S.]51: 63–66.

    CAS  Google Scholar 

  92. —. 1946c. Chemical mechanism of atmospheric nitrogen fixation byAzotobacter. Mikrobiologiia15: 509–518.

    CAS  Google Scholar 

  93. —. 1947. Fixation of atmospheric nitrogen byAzotobacter as affected by substances entering into reaction with the nitrogen-fixation catalyst as a base. Compt. Rend. Acad. Sci. [U.R.S.S.]55: 351–354.

    Google Scholar 

  94. —. 1948a. Significance of carbon-linked hydrogen in fixation of molecular nitrogen byAzotobacter. Mikrobiologiia17: 208–217.

    CAS  Google Scholar 

  95. —. 1948b. Fixation of molecular nitrogen byAzotobacter in the presence of amides and amino acids. Mikrobiologiia17: 425–434.

    CAS  Google Scholar 

  96. —. 1949a. Participation of hemin enzyme in fixation of molecular nitrogen byAzotobacter. Doklady Akad. Nauk S.S.S.R.66: 113–116.

    CAS  Google Scholar 

  97. —. 1949b. Nitrogen fixation byAzotobacter in the presence of surface-active compounds and dehydrating agents. Mikrobiologiia18: 299–309.

    CAS  Google Scholar 

  98. —. 1949c. The effect of ascorbic acid on atmospheric nitrogen fixation byAzotobacter. Doklady Akad. Nauk S.S.S.R.66: 945–948.

    CAS  Google Scholar 

  99. —. 1949d. Two-component structure of the catalyst of nitrogen fixation inAzotobacter and the course of the physiological process in fixation of molecular nitrogen. Doklady Akad. Nauk S.S.S.R.67: 557–559.

    CAS  Google Scholar 

  100. Fedorowa-Winogradowa, T. andGurfein, L. N. 1928. Beiträge zur Frage der Wirkung der Bodenamöben auf das Wachstum und die Entwicklung desAzotobacter chroococcum unter Versuchsbedingungen auf sterilem Boden. Centralbl. Bakt. II Abt.74: 14–21.

    Google Scholar 

  101. Ferguson, C. E. andAlbrecht, W. A. 1941. Nitrogen fixation and soil fertility exhaustion by soybeans under different levels of potassium. Mo. Agr. Exp. Sta., Res. Bull.330: 1–52.

    Google Scholar 

  102. Fernandes, F. andBhat, J. V. 1945. A note on the association ofChlorococcum humicolum in roots ofCycas revoluta. Current Sci.14: 235.

    Google Scholar 

  103. Fogg, G. E. 1947. Nitrogen fixation by blue-green algae. Endeavor [London]6: 172–175.

    Google Scholar 

  104. Fraps, G. S. andSterges, A. J. 1935. Effect of sunlight on the nitrification of ammonium salts in soils. Soil Sci.39: 85–94.

    Article  CAS  Google Scholar 

  105. Fred, E. B. 1916. Some factors that influence nitrate formation in acid soils. Soil Sci.1: 317–338.

    Article  CAS  Google Scholar 

  106. Frei, H. 1942. Quantitative studies on the assimilation of elementary N from the air by pellicle-forming yeasts. Zentr. Bakt. Parasitenk. II Abt.104: 326–365.

    Google Scholar 

  107. Fulmer, E. I. andChristensen, L. M. 1925. The fixation of atmospheric nitrogen by yeast as a function of the hydrogen ion concentration. Jour. Physiol. Chem.29: 1415–1418.

    Article  CAS  Google Scholar 

  108. Gainey, P. L. andFowler, E. 1945. Growth curves ofAzotobacter at different pH levels. Jour. Agr Res.70: 219–236.

    CAS  Google Scholar 

  109. —. 1948. The significance of available calcium as a factor limiting growth ofAzotobacter at pH levels below 6.0. Jour. Agr. Res.76: 265–269.

    CAS  Google Scholar 

  110. —. 1949. Effect of inoculating a soil withAzotobacter upon plant growth and nitrogen balance. Jour. Agr. Res.78: 405–411.

    CAS  Google Scholar 

  111. Georgi, C. 1935. The influence of the carbohydrate-nitrogen relation on nodule production by red clover. Jour. Agr. Res.51: 597–612.

    CAS  Google Scholar 

  112. Gerlach, M. 1934. Zur Stickstoffsammlung im Ackerboden. Landw. Jahrb.80: 73–101.

    CAS  Google Scholar 

  113. Gest, H. andKamen, M. D. 1949. Studies in the metabolism of photosynthetic bacteria. IV. Photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria. Jour. Bact.58: 239–245.

    CAS  Google Scholar 

  114. Giöbel, G. 1926. The relation of the soil nitrogen to nodule development and fixation of nitrogen by certain legumes. N. J. Agr. Exp. Sta., Bull.436: 3–125.

    Google Scholar 

  115. Gonick, W. N. andReuszer, H. W. 1948. The distribution ofAzotobacter chroococcum andAzotobacter vinelandii in Colorado soils and surface waters. Soil Sci. Soc. Am., Proc.13: 251–257.

    Article  Google Scholar 

  116. Greaves, J. E. andCarter, E. G. 1920. Influence of moisture on bacterial activities of the soil. Soil Sci.10: 361–386.

    CAS  Google Scholar 

  117. — 1928. The influence of soluble salts and organic manures on soil nitrogen. Proc. First Int. Cong. Soil Sci.3: 213–221.

    Google Scholar 

  118. —,Jones, L. andAnderson, A. 1940. The influence of amino acids and proteins on nitrogen fixation byAzotobacter chroococcum. Soil Sci.49: 9–19.

    Article  CAS  Google Scholar 

  119. — andJones, L. W. 1944. The influence of temperature on the microflora of the soil. Soil Sci.58: 377–387.

    Article  CAS  Google Scholar 

  120. — andBracken, A. F. 1946. Effect of cropping on the nitrogen, phosphorus, and organic carbon content of a dry-farm soil and on the yield of wheat. Soil Sci.62: 355–364.

    Article  CAS  Google Scholar 

  121. Greene, R. A. 1932. The effect of temperature upon nitrogen fixation byAzotobacter. Soil Sci.33: 153–161.

    Article  CAS  Google Scholar 

  122. Griffith, G. andManning, H. L. 1950. Nitrate accumulation in Uganda soils. Nature [London]165: 571.

    Article  CAS  Google Scholar 

  123. Grovineau, G., Gouny, P. andLefevre, G. 1948. Nitrification in calcareous soils. Compt. Rend. Acad. Sci. [Paris]226: 957–958.

    Google Scholar 

  124. Haas, A. R. C. 1937. Nitrogen in relation to the growth of citrus cuttings in solution cultures. Plant Physiol.12: 163–172.

    PubMed  CAS  Google Scholar 

  125. Hahn, B. E., Olson, F. R. andRoberts, J. L. 1942. Influence of potassium chloride on nitrification in Bedford silt loam. Soil Sci.54: 113–121.

    Article  CAS  Google Scholar 

  126. Hampton, H. E. andAlbrecht, W. A. 1944. Nitrogen fixation, composition, and growth of soybeans in relation to variable amounts of potassium and calcium. Mo. Agr. Exp. Sta., Res. Bull.381: 1–36.

    Google Scholar 

  127. Harston, C. B. andAlbrecht, W. A. 1943. Soil acidity for improved nutrient delivery and nitrogen fixation. Soil Sci. Soc. Am., Proc.7: 247–257.

    Article  CAS  Google Scholar 

  128. Herisset, A. 1946. Fixation de l’azote par leNostoc commune Vaucher. Compt. Rend. Acad. Sci. [Paris]222: 1127–1129.

    CAS  Google Scholar 

  129. Hervey, R. J. andGreaves, J. E. 1941. Nitrogen fixation byAzotobacter chroococcum in the presence of soil Protozoa. Soil Sci.51: 85–100.

    Article  CAS  Google Scholar 

  130. Hirko, P. 1930. Influence of moisture on nitrification and the mobility and immobility of P2O5 and Ca in the soil. Proc. Int. Soc. Soil Sci.5: 69.

    CAS  Google Scholar 

  131. Hirst, C. T. andGreaves, J. E. 1944. The nitrogen and mineral contents of sugar beet sections. Soil Sci.58: 25–34.

    CAS  Google Scholar 

  132. Hobbs, C. H. 1944. Studies on mineral deficiency in pine. Plant Physiol.19: 590–602.

    PubMed  CAS  Google Scholar 

  133. Holley, K. T., Dublin, T. G. andPickett, T. A. 1932. A study of ammonia and nitrate nitrogen for cotton. Ga. Agr. Exp. Sta., Bull. 273.

  134. Horner, C. K. andBurk, D. 1934. Magnesium, calcium and iron requirements for growth ofAzotobacter in free and fixed nitrogen. Jour. Agr. Res.48: 981–995.

    CAS  Google Scholar 

  135. ——Allison, F. E. andSherman, M. S. 1942. Nitrogen fixation byAzotobacter as influenced by molybdenum and vanadium. Jour. Agr. Res.65: 173–193.

    CAS  Google Scholar 

  136. — andAllison, F. E. 1944. Utilization of fixed nitrogen byAzotobacter and influence on nitrogen fixation. Jour. Bact.47: 1–14.

    CAS  Google Scholar 

  137. —. 1923. Protein synthesis byAzotobacter. Jour. Agr. Res.24: 263–274.

    Google Scholar 

  138. Ilvessalo, Y. 1923. Ein Beitrag zur Frage der Korrelation zwischen den Eigenschaften des Bodens und dem Zuwachs des Waldbestandes. Acta Forestalia Fennica25.

  139. Ingham, G. 1938. Nitrogen transformations in the soil. Jour. So. Afr. Chem. Inst.21: 59–63.

    CAS  Google Scholar 

  140. —. 1940. Nitrogen fixation in South African soils; is it biological? Jour. So. Afr. Chem. Inst.34: 11–15.

    CAS  Google Scholar 

  141. Iwasaki, K. 1930. Weitere Untersuchungen zur Fixation des Luftstickstoffs durch Azotobakter. Biochem. Zeit.226: 32–46.

    CAS  Google Scholar 

  142. Janke, A., Sekera, F. andSzilvinyi, A. 1934. Mikrobiologische Bodenuntersuchungen im Lunzer Bebiet. I. Allgemeiner Teil:Zeil und Methodik der Untersuchungen. Standortsfaktoren und Keimge halt. Archiv. Mikrobiol.5: 223–245.

    Article  CAS  Google Scholar 

  143. Jensen, H. L. 1929. The influence of the carbon:nitrogen ratios of organic material on the mineralization of nitrogen. Jour. Agr. Sci.19: 71–82.

    CAS  Google Scholar 

  144. —. 1939. The nitrogen economy of wheat soils. With special reference to nonsymbiotic nitrogen fixation. Jour. Austral. Inst. Agr. Sci.5: 154–159.

    CAS  Google Scholar 

  145. —. 1940. Nitrogen fixation and cellulose decomposition by soil microorganisms. I. Aerobic cellulose-decomposers in association withAzotobacter. Proc. Linn. Soc. New So. Wales65: 543–556.

    CAS  Google Scholar 

  146. —. 1942. Nitrogen fixation in leguminous plants. II. Is symbiotic nitrogen fixation influenced byAzotobacter? Proc. Linn. Soc. New So. Wales67: 205–212.

    CAS  Google Scholar 

  147. —. 1946. The nitrogen-fixing activity of legume root nodules. Austral. Jour. Sci.9: 118.

    CAS  Google Scholar 

  148. — andSpencer, D. 1947. The influence of molybdenum and vanadium on nitrogen fixation byCl. butyricum and related organisms. Proc. Linn. Soc. New So. Wales72: 73–86.

    CAS  Google Scholar 

  149. Jones, W. N. andSmith, M. L. 1928. The fixation of atmospheric nitrogen byPhoma radicis callunae, including a new method for investigating nitrogen fixing in microorganisms. Brit. Jour. Exp. Biol.6: 167–189.

    CAS  Google Scholar 

  150. Jordan, J. V. andAnderson, G. R. 1950. Effect of boron on nitrogen fixation byAzotobacter. Soil Sci.69: 311–319.

    Article  CAS  Google Scholar 

  151. Joshi, N. V. andBiswas, S. C. 1935. Does photonitrification occur in soils? Trans. Third Int. Congr. Soil Sci. Vol.3: 104.

    CAS  Google Scholar 

  152. ——. 1948. Does photonitrification occur in the soil? Indian Jour. Agr. Sci.18: 115–129.

    CAS  Google Scholar 

  153. Kalantarian, P. andPanossian, A. 1930.Azotobacter. Bull. Univ. etat R.S.S.-Armenie No.5: 221–224.

    Google Scholar 

  154. Kalinenko, V. O. 1948. Heterotrophic bacteria as nitrifiers. Pochvovedenie1948: 357–363.

    Google Scholar 

  155. Katznelson, H. andWilson, J. K. 1941. Occurrence ofRhizobium meliloti bacteriophage in soils. Soil Sci.51: 59–63.

    Article  CAS  Google Scholar 

  156. Keilin, D. andWang, Y. L. 1945. Haemoglobin in the root nodules of leguminous plants. Nature [London]155: 227–229.

    Article  CAS  Google Scholar 

  157. — andSmith, J. D. 1947. Hemoglobin and nitrogen fixation in root nodules of leguminous plants. Nature [London]159: 692–694.

    Article  CAS  Google Scholar 

  158. Khalil, F. 1929. The effect of drying on microbiological processes in soils. Zentr. Bakt. Parasitenk.79: 93–107.

    CAS  Google Scholar 

  159. Khan, D. 1940. The effect of reaction of the medium on the decomposition of the organic matter in soils with various relative contents of carbon and nitrogen. Trans. Dokuchaev Soil Inst. [U.S.S.R.]23: 139–145.

    CAS  Google Scholar 

  160. Korneeva, N. P. 1940. Influence of the physico-chemical properties of the soil on bacteriophage. Mikrobiol. Zhurnal (Kiev)7: 105–125.

    CAS  Google Scholar 

  161. Korsakova, M. P. 1928a. Chemistry of the reduction of nitrates. Jour. All-Russ. Congr. Bot., Leningrad1928: 205–206.

    Google Scholar 

  162. —. 1928b. The chemistry of denitrification. II. Compt. Rend. Acad. Sci. U.R.S.S., Leningrad, Ser. A.1928: 341–346.

    Google Scholar 

  163. Kostychev, S. P. 1930. Issledovaniia po biocinamike pochv. Trudy Pochvennogo Instituta Imeni V. V. Dokuchaeva. 149–160.

  164. Krasil’nikov, N. A., Kriss, A. E. andLitvinov, M. A. 1936. --Mikrobiologischeskaia kharakteristika rizosfery kul’turnykh rastenii. Microbiologiia5: 87–98.

    Google Scholar 

  165. — andKorenyako, A. I. 1946. Influence of non-nodule bacteria on growth and nitrogen fixation in legumes. Mikrobiologiia15: 417–421.

    CAS  Google Scholar 

  166. Krishna, P. G. 1928. Nitrogen fixation by soil microorganisms. Jour. Agr. Sci.18: 432–438.

    Article  CAS  Google Scholar 

  167. Lambin, A. Z. andLambina, T. F. 1940. Acidification and liming of soils as factors affecting the yields of plants. Trudy Omskogo Sel’skokhoz Inst.4/17: 34–55.

    Google Scholar 

  168. Lee, S. B., Wilson, J. B. andWilson, P. W. 1942. Mechanism of biological nitrogen fixation. X. Hydrogenase in cell-free extracts and intact cells ofAzotobacter. Jour. Biol. Chem.144: 273–281.

    CAS  Google Scholar 

  169. — andWilson, P. W. 1943. Hydrogenase and N fixation byAzotobacter. Jour. Biol. Chem.151: 377–385.

    CAS  Google Scholar 

  170. Lees, H. andQuastel, J. H. 1946. Biochemistry of nitrification in soil. 2. The site of soil nitrification. Biochem. Jour.40: 815–823.

    CAS  Google Scholar 

  171. — 1948a. Effects of various organic materials on soil nitrification. Biochem. Jour.42: 528–531.

    CAS  Google Scholar 

  172. — 1948b. Immobilization of mineral nitrogen in soils by different organic materials. Biochem. Jour.42: 531–534.

    CAS  Google Scholar 

  173. — 1948c. Effects of zinc and copper on soil nitrification. Biochem. Jour.42: 534–538.

    CAS  Google Scholar 

  174. Leonard, O. A., Anderson, W. S. andGieger, M. 1948. Effect of nutrient level on the growth and chemical composition of sweet potatoes in sand cultures. Plant Physiol.23: 223–237.

    PubMed  CAS  Google Scholar 

  175. Leroux, D. 1940. Influence of some trace elements on the combustion of organic matter and on nitrification in the soil. Compt. Rend. Acad. Sci. [Paris]210: 770–772.

    CAS  Google Scholar 

  176. Lind, C. J. andWilson, P. W. 1942. Nitrogen fixation byAzotobacter in association with other bacteria. Soil Sci.54: 105–111.

    Article  CAS  Google Scholar 

  177. Lindstrom, E. S., Burris, R. H. andWilson, P. W. 1949. Nitrogen fixation by photosynthetic bacteria. Jour. Bact.58: 313–316.

    CAS  Google Scholar 

  178. Lipman, C. B. andTaylor, J. K. 1922. Proof of the power of the wheat plant to fix atmospheric nitrogen. Science56: 605–606.

    Article  PubMed  CAS  Google Scholar 

  179. Lipman, J. G. andConybeare, A. B. 1936. Preliminary note on the inventory and balance sheet of plant nutrients in the United States. N. J. Agr. Exp. Sta., Bull.607: 1–23.

    Google Scholar 

  180. Little, H. N. andBurris, R. H. 1947. Activity of the red pigment from leguminous root nodules. Jour. Am. Chem. Soc.69: 838–841.

    Article  CAS  Google Scholar 

  181. Loehwing, W. F. 1937. Root interactions of plants. Bot. Rev.3: 195–239.

    CAS  Google Scholar 

  182. Loitsjanskaja, M. S. 1941. On the development of nodule bacteria in roots of alkaloid-containing and alkaloid-free lupine. Mikrobiologiia10: 15–32.

    Google Scholar 

  183. Loo, T. L. 1931. Studies on the absorption of ammonia and nitrate by the roots ofZea mais seedlings in relation to the concentration and the actual acidity of the culture solution. Jour. Faculty Agr., Hokkaido Imp. Univ.30: 1–118.

    CAS  Google Scholar 

  184. Luchetti, G. 1932. The influence of selenites and tellurites on microorganisms. Boll. ist. Super. agrar. Pisa8: 473–490.

    CAS  Google Scholar 

  185. Lyon, T. L. 1918. Influence of higher plants on bacterial activities in soils. Jour. Am. Soc. Agron.10: 313–322.

    Google Scholar 

  186. McCalla, T. M. 1937. Behavior of legume bacteria (Rhizobium) in relation to exchangeable calcium and hydrogen ion concentration of the colloidal fraction of the soil. Mo. Agr. Exp. Sta., Res. Bull.256: 1–44.

    Google Scholar 

  187. — 1942. Why does H become toxic to soil bacteria? Soil Sci. Soc. Am., Proc.6: 165–167.

    Article  Google Scholar 

  188. Madhok, M. R. 1940. Association of legumes and non-legumes. Soil Sci.49: 419–429.

    Article  CAS  Google Scholar 

  189. Magrou, J. 1944. Role of endotrophic mycorrhizae. Compt. Rend. Acad. Sci. [Paris]219: 519–521.

    CAS  Google Scholar 

  190. Makrinow, I. W. 1934. Die biologische Bearbeitung von Pflanzenresten. Zentralbl. Bakt. II Abt.90: 154–157.

    Google Scholar 

  191. Mameli de Calvino, E. andPollacci, G. 1923. The direct assimilation of free nitrogen by plants. A review of recent work on the subject. Torreya23: 99–104.

    Google Scholar 

  192. Martin, W. P. 1940. Distribution and activity ofAzotobacter in the range and cultivated soils of Arizona. Univ. Ariz. Agr. Exp. Sta., Tech. Bull.83: 333–369.

    Google Scholar 

  193. —,Buehrer, T. F. andCaster, A. B. 1942. Threshold pH value for the nitrification of ammonia in desert soils. Soil Sci. Soc. Am., Proc.7: 223–228.

    Article  Google Scholar 

  194. Matheson, D. H. 1947. Cleaning rapid sand filters with chlorine at Hamilton plant. Eng. Contract Rec.60: 98–100.

    CAS  Google Scholar 

  195. Matyashvili, S. I. 1947. Influence of boron and molybdenum on morphological and physiological properties ofAzotobacter chroococcum. Mikrobiologiia16: 19–31.

    CAS  Google Scholar 

  196. Menchikovsky, F. 1933. Notes on the fixation of N in local sandy soil by symbiosis betweenAzotobacter, Oscillaria andGloeocapsa. Hadar6: 238.

    Google Scholar 

  197. Mevius, W. andEngle, H. 1929. Die Wirkung der Ammoniumsalze in ihrer Abhängigkeit von der Wasserstoffionenkonzentration. Planta9: 1–83.

    Article  Google Scholar 

  198. Mirchandani, T. J. 1937. Nitrogen status of Indian soils. Proc. Nat. Inst. Sci. [India]3: 185–189.

    CAS  Google Scholar 

  199. Mishustin, E. N. andProkoshev, V. N. 1949. Changes in soil microflora resulting from prolonged use of fertilizers. Mikrobiologiia18: 30–41.

    CAS  Google Scholar 

  200. Moore, B., Whitley, E. andWebster, T. A. 1921. Studies of photosynthesis in marine algae. I. Fixation of carbon and nitrogen from inorganic sources in sea water. II. Proc. Royal Soc., B.92: 51–60).

    CAS  Google Scholar 

  201. Mowry, H. 1933. Symbiotic nitrogen fixation in the genusCasuarina. Soil Sci.36: 409–422.

    Article  CAS  Google Scholar 

  202. Musil, F. 1946. Carodějné kruhy. Lesnická Práce25: 341–355.

    Google Scholar 

  203. Nath, B. V. 1940. Reports of the imperial agricultural chemist. Imp. Agr. Res. Inst., New Delhi, Sci. Rep.1938–1939: 83–102.

    Google Scholar 

  204. Neller, J. F. 1944. Influence of cropping, rainfall and water table on nitrates in everglades peat. Soil Sci.57: 275–280.

    Article  CAS  Google Scholar 

  205. Newton, J. D. 1930. Seasonal fluctuations in numbers of microorganisms and nitrate nitrogen in an Alberta soil. Sci. Agr.10: 361–368.

    CAS  Google Scholar 

  206. Nickell, L. G. andBurkholder, P. R. 1947. Inhibition ofAzotobacter by soil actinomycetes. Jour. Am. Soc. Agron.39: 771–779.

    CAS  Google Scholar 

  207. Nicol, H. 1934. The derivation of the nitrogen of crop plants with special reference to associated growth. Biol. Rev.9: 383–410.

    Article  CAS  Google Scholar 

  208. Nightingale, G. T. 1934. Ammonium and nitrate nutrition of dormant delicious apple trees at 48° F. Bot. Gaz.95: 437–452.

    Article  CAS  Google Scholar 

  209. Nilsson, R. 1942. --Aggviteframställning under användande av luftens fria kväve som kvavekälla. K. Landtbruks-Akad. Handl. och Tidskr. [Stockholm]81: 326–331.

    CAS  Google Scholar 

  210. Niss, H. F. andWilson, P. W. 1947. Hemoprotein from root nodules and nitrogen fixation byRhizobium. Proc. Soc. Exp. Biol. & Med.66: 233–235.

    CAS  Google Scholar 

  211. Norman, A. G. 1946a. Recent advances in soil microbiology. Soil Sci. Soc. Am., Proc.1946: 9–15.

    Google Scholar 

  212. — andKrampitz, L. O. 1946b. The nitrogen nutrition of soybeans. II. Effect of available soil nitrogen on growth and nitrogen fixation. Soil Sci. Soc. Am., Proc.10: 191–196.

    Article  CAS  Google Scholar 

  213. Omeliansky, V. 1926. La résistance des culturesd’Azotobacter chroococcum à la dessiccation. Compt. Rend. Acad. Sci. [Paris]183: 707–708.

    CAS  Google Scholar 

  214. Orcutt, R. A. andFred, E. B. 1935. Light intensity as an inhibiting factor in the fixation of atmospheric nitrogen by Manchu soybeans. Jour. Am. Soc. Agron.27: 550–558.

    CAS  Google Scholar 

  215. Pardo, J. H. 1932. Ammonia vs. nitrate as nitrogen sources for sugar cane. Proc. Fourth Cong. Int. Soc. Sugar Cane Tech., Bull. 13.

  216. Parr, C. H. andBose, R. D. 1945. Phosphate manuring of legumes. II. Indian Farming6: 201–208.

    Google Scholar 

  217. Peevy, W. J. andNorman, A. G. 1948. Influence of composition of plant materials on properties of the decomposed residues. Soil Sci.65: 209–226.

    Article  CAS  Google Scholar 

  218. Peklo, J. andSatava, J. 1949. Fixation of free nitrogen by bark beetles. Nature [London]163: 336–337.

    Article  CAS  Google Scholar 

  219. —. 1949. Symbiosis ofAzotobacter with insects. Rep. Proc. Fourth Int. Cong. Microbiol.1947: 477–478.

    Google Scholar 

  220. Pethica, B. A., Roberts, E. R. andWinter, E. R. S. 1949. Role of hydroxylamine in biological fixation of nitrogen. Nature [London]163: 408.

    Article  CAS  Google Scholar 

  221. Phelps, A. S. andWilson, P. W. 1941. Occurrence of hydrogenase in nitrogen-fixing organisms. Proc. Soc. Exp. Biol. & Med.47: 473–476.

    CAS  Google Scholar 

  222. Phillis, E. andMason, T. G. 1943. Memoirs, Cotton Res. Sta., Trinidad, B,15: 469. [Not seen; from Bonner]

    Google Scholar 

  223. Pillai, S. G., Wadhwani, T. K., Gurbaxani, M. I. andSubrahmanyan, V. 1948. Observations on nitrite-producing bacteria from different sources and the role of Protozoa in nitrification. Current Sci.17: 122–123.

    CAS  Google Scholar 

  224. Pinck, L. A., Allison, F. E. andGaddy, V. L. 1946. The effect of straw and nitrogen on the yield and quantity of nitrogen fixed by soybeans. Jour. Am. Soc. Agron.38: 421–431.

    CAS  Google Scholar 

  225. ———. 1948. Utilization of nitrogen in cropping systems with and without green manure in the greenhouse. Soil Sci.66: 39–52.

    Article  CAS  Google Scholar 

  226. Plotho, O. 1941. Die Synthese der Knollchen an den Wurzeln der Erle. Arch. Mikrobiol.12: 1–18.

    Article  Google Scholar 

  227. Pochon, J. andLajudie, J. 1948. Action de certains antiseptiques sur la microflore normale du sol. Compt. Rend. Acad. Sci. [Paris]226: 2091–2092.

    CAS  Google Scholar 

  228. Poschenrieder, H., Sammet, K. andFischer, R. 1940. Untersuchungen ueber den Einfluss verschiedener Ernährung mit Kali und Phosphorsäure auf die Ausbildung der Wurzelknollchen und die Tätigkeit der Knöllchenbakterien bei der Sojabohne. Zentralbl. Bakt. II Abt.102: 388–395.

    Google Scholar 

  229. Prianischnikov, D. N. 1923. Sur l’assimilation de l’ammoniaque par les plantes superieures. Comp. Rend. Acad. Sci. [Paris]177: 603–606.

    Google Scholar 

  230. Puri, A. N., Rai, B. andKapur, R. K. 1946. Oxidation of nitrites and oxalates in soils. Soil Sci.62: 121–136.

    Article  CAS  Google Scholar 

  231. Pyhob, E. B. 1926. Possibility of NO2 formation from N-containing organic materials and from ammonia, without intervention ofNitrosomonas. Ber. Bact. Agron. Sta. Moskau1926: 189–199.

    Google Scholar 

  232. Quispel, A. 1947. The influence of the oxidation-reduction potential of the medium upon the growth ofAzotobacter chroococcum. Anatomie van Leeuwenhoek, Jour. Microbiol. & Serol.13: 33–43.

    Google Scholar 

  233. Rao, G. G. 1934. Newer aspects of nitrification: I. Soil Sci.38: 143–159.

    Article  CAS  Google Scholar 

  234. Rao, K. A. 1923. A preliminary account of symbiotic N fixation in non-leguminous plants with special reference toChomelia asiatica. Agr. Jour. India18: 132–143.

    CAS  Google Scholar 

  235. Remy, T. 1926. Die Einwirkung zunehmenden Kalgehaltes auf die Lebensäusserungen der bodenbewohnenden Kleinlebewelt. Deut. Landw. Presse53: 514.

    Google Scholar 

  236. Roberts, J. L. andOlson, F. R. 1942. The influence of fertilizers and season on nonsymbiotic nitrogen fixation in Brookston and Bedford silt loans. Jour. Am. Soc. Agron.34: 624–627.

    CAS  Google Scholar 

  237. ——. 1944. Influence of phosphorus and potassium on symbiotic nitrogen fixation. Jour. Am. Soc. Agron.36: 637–645.

    CAS  Google Scholar 

  238. Rommel, L. G. andHeiberg, S. O. 1931. Types of humus layer in the forests of northeastern United States. Ecology12: 567–608.

    Article  Google Scholar 

  239. —. 1939. The ecological problem of mycotrophy. Ecology20: 163–167.

    Article  Google Scholar 

  240. Rosenblum, E. D. andWilson, P. W. 1950. Molecular hydrogen and nitrogen fixation byClostridium. Jour. Bact.59: 83–91.

    CAS  Google Scholar 

  241. Rossi, G.de 1933. La nitrification dans le terrain par simple action physico-chemique. Soc. Int. Microbiol. Boll. Sez. Ital.5: 132–136.

    Google Scholar 

  242. Russell, E. J. andRichards, E. H. 1919. The amount and composition of rain falling at Rothamsted. Jour. Agr. Sci.9: 309–337.

    CAS  Google Scholar 

  243. Schanderl, H. 1940. Beweise für die Fähigkeit zur Assimilation des molekularen Stickstoffs durch die Bakterien-symbionten einiger Nichtleguminosen. Gartenbauswiss.15: 1–27.

    CAS  Google Scholar 

  244. —. 1942a. Vergleichende Untersuchungen über den Stickstoffhaushalt von Leguminosen und Nichtleguminosen. Ber. Deut. Bot. Ges.60: 86–93.

    Google Scholar 

  245. — 1942b. Assimilation of elemental nitrogen of the air by the yeast symbionts ofRhagium inquisitor. Zeit. Morphol. Okol. Tiere38: 526–533.

    Article  CAS  Google Scholar 

  246. —. 1943. The N content of leguminous and non-leguminous plants. Planta33: 424–457.

    Article  CAS  Google Scholar 

  247. Scheffer, F. andKarapurkar, Y. M. 1934. Dependence of nitrification on the nature and rate of decomposition of organic materials. Kuhn-Arch.37: 143–172.

    CAS  Google Scholar 

  248. Schmidt, O. C. 1948a. Zur Frage der Impfung mitAzotobacter. II. Zeits. Pflanzenernähr., Düng, u Bodenk.42: 148–159.

    Article  Google Scholar 

  249. —. 1948b. Über die Wirkung verschiedener Impfpräparate fur Leguminosen. Zeits. Pflanzenernahr., Düng. u. Bodenk.42: 268–271.

    Article  Google Scholar 

  250. Sen, J. 1929. Is bacterial association a factor in nitrogen assimilation by rice plants? Agr. Jour. India24: 229–231.

    CAS  Google Scholar 

  251. Shields, L. M. 1951. Leaf xeromorphy in dicotyledon species from a gypsum sand deposit. Am. Jour. Bot.38: 175–190.

    Article  Google Scholar 

  252. -. 1953. Nitrogen sources and nitrogen content of plants growing in gypsum sand. [In prep.]

  253. Shulov, I. 1912. Sterile cultures of higher plants. Assimilation of nitrogen as ammonia and nitrates. Jour. Exp. Landw.13: 200–206.

    Google Scholar 

  254. Shumakov, V. S. 1948. The causes that hinder nitrification in forest soils. Pochvovedenie (Pedology)1948: 227–236.

    Google Scholar 

  255. Sideris, C. P., Krauss, B. H. andYoung, H. Y. 1937. Assimilation of ammonium and nitrate nitrogen from solution cultures by roots ofPandanus veitchii hort. and distribution of the various nitrogen fractions and sugars in the stele and cortex. Plant Physiol.12: 899–928.

    PubMed  CAS  Google Scholar 

  256. Singh, B. N. andNair, K. M. 1939. Is sunlight a factor in nitrogen transformation in soil? Soil Sci.47: 285–291.

    Article  CAS  Google Scholar 

  257. Skinner, C. E. 1928. Fixation of nitrogen byBacterium aerogenes and related species. Soil Sci.25: 195–205.

    Article  CAS  Google Scholar 

  258. —. 1930. An explanation of the action of the so-called accessory substance in the association ofAzotobacter and cellulose decomposing organisms. Jour. Bact.19: 149–159.

    CAS  Google Scholar 

  259. Smith, N. R., Dawson, V. T. andWenzel, M. E. 1946. The effect of certain herbicides on soil microorganisms. Soil Sci. Soc. Am., Proc.10: 197–201.

    Article  CAS  Google Scholar 

  260. Smith, J. D. 1948. Symbiotic microorganisms of aphids and fixation of atmospheric nitrogen. Nature [London]162: 930–931.

    Article  CAS  Google Scholar 

  261. Snow, L. M. 1935. A comparative study of the bacterial flora of wind-blown soil:VI. Death Valley, California with summary of six soil studies. Soil Sci.40: 181–190.

    Article  CAS  Google Scholar 

  262. Snyder, R. M. 1925. Nitrogen fixation by non-leguminous plants. Mich Agr. Exp. Sta., Quart. Bull.8(1): 34–36.

    CAS  Google Scholar 

  263. Stapp, C. 1940.Azotomonas insolita, a new aerobic nitrogen-fixing organism. Zentr. Bakt., Parasitenk. II Abt.102: 1–9.

    Google Scholar 

  264. Starc, A. 1943. Zur Frage der Rhizosphäre und Bodenimpfung mitAzotobacter. Arch. Mikrobiol.13: 164–181.

    Google Scholar 

  265. Starkey, R. L. 1929. Some influences of the development of higher plants upon the microorganisms in the soil. II. Influence of the stage of plant growth upon abundance of organisms. Soil Sci.27: 355–378.

    CAS  Google Scholar 

  266. Stevens, F. L. andWithers, W. A. 1909. Concerning the existence of non-nitrifying soils. Science29: 506–508.

    Article  PubMed  CAS  Google Scholar 

  267. Stokes, J. L. 1940. The role of algae in the nitrogen cycle of the soil. Soil Sci.49: 265–267.

    CAS  Google Scholar 

  268. —. 1941. The relation of algae to the nitrogen economy of the soil. Chron. Bot.6: 202–203.

    CAS  Google Scholar 

  269. Süchting, H. 1949. The nitrogen dynamics of forest soils and the nitrogen nutrition of forest stock. Zeits. Pflanzenernähr Düngung u. Bodenk.48: 1–37.

    Article  Google Scholar 

  270. Sulaiman, M. 1941. Influence of light on nitrogen fixation in Dacca soil. Jour. Indian Chem. Soc.18: 40–42.

    CAS  Google Scholar 

  271. —. 1944. Effect of algal growth on the activity ofAzotobacter in rice fields. Indian Jour. Agr. Sci.14: 277–282.

    Google Scholar 

  272. Tam, R. K. andClark, H. E. 1943. Effect of chloropicrin and other soil disinfectants on the nitrogen nutrition of the pineapple plant. Soil Sci.56: 245–261.

    Article  CAS  Google Scholar 

  273. Thornton, H. G. 1936. The present state of our ignorance concerning the nodules of leguminous plants. Sci. Prog.122: 236–249.

    Google Scholar 

  274. Tiedjens, V. A. andRobbins, W. R. 1931. The use of ammonia and nitrate nitrogen by certain crop plants. N. J. Agr. Exp. Sta., Bull. 526.

  275. Timonin, M. I. 1949.Azotobacter preparation (Azotogen) as fertilizer for cultivated plants. Soil Sci. Soc. Am., Proc.13: 246–250.

    Article  CAS  Google Scholar 

  276. Tompos, A. 1948. Nitrogényüjtö novenyek, és a talaj nitrogéntartalma. Kisérletugyi Kozlemények47: 21–32.

    Google Scholar 

  277. Toth, L. A., Wolsky, A. andBatori, M. 1942. Stickstoffbindung aus der Luft bei den Aphiden und bei den Homoptern (Rhynchota inseeta). Zeits. Vergleich. Physiol.30: 67–73.

    Article  CAS  Google Scholar 

  278. —. 1949. The biological fixation of atmospheric nitrogen by means of microorganisms living in symbiosis with insects. Proc. Int. Cong. Exp. Cytol., Stockholm,1947: 304–306.

    Google Scholar 

  279. Tove, S. R., Niss, H. F. andWilson, P. W. 1950. Fixation of nitrogen 15 by excised nodules of leguminous plants. Jour. Biol. Chem.184: 77–82.

    CAS  Google Scholar 

  280. Troug, E., Goates, R. J., Gerloff, G. C. andBerger, K. C. 1947. Magnesium-phosphorus relations in plant nutrition. Soil Sci.63: 19–25.

    Google Scholar 

  281. Troug, E. 1948. Lime in relation to availability of plant nutrients. Soil Sci.65: 1–7.

    Article  Google Scholar 

  282. Truffant, G. andBesszonoff, N. 1926. Sur la prédominance l’activité des fixateurs anaerobias d’azote dans de sol. Compt. Rend. Acad. Sci. [Paris]181: 165–167.

    Google Scholar 

  283. Tucay, J. O. 1933. Nitrifying efficiency of soils. Philippine Agr.21: 551–559.

    CAS  Google Scholar 

  284. Ulrich, A. 1950. Nitrogen fertilization of sugar beet in California. II. Effect upon nitrate-nitrogen content of the petioles and sugar production. Proc. Am. Soc. Sugar Beet Technol.6: 372–382.

    CAS  Google Scholar 

  285. Uppal, B. N. andPatel, M. K. 1947. Influence of root excretions and germinating seeds on nitrogen fixation byAzotobacter. Proc. Indian Acad. Sci. B.25: 173–177.

    Google Scholar 

  286. Vandecaveye, S. C. andKatznelson, H. 1936. Bacteriophage as related to the root nodule bacteria of alfalfa. Jour. Bact.31: 465–477.

    CAS  Google Scholar 

  287. — andMoodie, C. D. 1942. Occurrence and activity ofAzotobacter in semiarid soils in Washington. Soil Sci. Soc. Am., Proc.7: 229–236.

    Article  Google Scholar 

  288. Van Niel, C. B. 1935. A note on the apparent absence ofAzotobacter in soils. Arch. Mikrobiol.6: 215–218.

    Article  Google Scholar 

  289. Verona, O. andPaci, S. 1931. Quelques recherches sur la bacteriologie des terrains de la maremme de Talamone. Soc. Int. Microbiol. Boll. Sez. Ital.3: 203–206.

    CAS  Google Scholar 

  290. Vinogradova, K. G. 1943. Presence of molybdenum in Leguminosae. Doklady Akad. Nauk. S.S.S.R.40: 31–34.

    CAS  Google Scholar 

  291. Virtanen, A. I., Hausen, S. V. andLaine, T. 1936. Excretion of nitrogenous compounds from the root nodules of leguminous plants inoculated with different strains of the nodule organism. Suomen Kemistilehti B, IX.5: 1.

    Google Scholar 

  292. —. 1939. Mechanism of symbiotic nitrogen fixation by leguminous plants. Trans. Third Comm. Int. Soc. Soil Sci. Vol. A: 4–19.

    CAS  Google Scholar 

  293. —. 1945. Symbiotic nitrogen fixation. Nature [London]155: 747–748.

    Article  Google Scholar 

  294. — andLaine, T. 1946. Red, brown and green pigments in leguminous root nodules. Nature [London]157: 25–26.

    Article  CAS  Google Scholar 

  295. —,Linkola, M. H. andRautanen, N. 1946. Glutamic acid among the excretion products of legume nodules. Suomen Kemistilehti19 B: 83–84.

    Google Scholar 

  296. —,Jorma, J., Linkola, H. andLinnasalmi, A. 1947a. On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. Acta Chem. Scand.1: 50–111.

    Google Scholar 

  297. —,Erkama, J. andLinkola, H. 1947b. The relation between nitrogen fixation and leghemoglobin content of leguminous root nodules. Acta Chem. Scand.1: 861–870.

    CAS  PubMed  Google Scholar 

  298. — andLinkola, H. 1948. On the antibacterial effect of spore-forming bacteria on the legume bacteria. Suomon Kemistilehti21 B: 12–13.

    Google Scholar 

  299. Volz, E. 1941. Nachprüfung der Möglichkeit von nichtbakterieller Stickstoffbindung aus Luft Stickstoff durch Kopplung energieliefernder Reaktionen. Bodenk. u. Pflanzenernahr.23: 260–264.

    CAS  Google Scholar 

  300. Waksman, S. A., Hotchkiss, M. andCarey, C. L. 1933. Marine bacteria and their role in the cycle of life in the sea. II. Bacteria concerned in the cycle of nitrogen in the sea. Biol. Bull.65: 137–167.

    Article  Google Scholar 

  301. — andHutchings, I. J. 1935. The function of cellulose and lignin in the preservation of nitrogen in soils and in composts. Trans. Third Int. Congr. Soil Sci. Vol.1: 163–167.

    CAS  Google Scholar 

  302. —,Madhok, M. R. andHollaender, A. 1937. Influence or artificial irradiation upon the oxidation of ammonia and formation of nitrate in soil. Soil Sci.44: 441–446.

    Article  Google Scholar 

  303. Walker, R. H., Sullivan, J. L. andPohlman, G. G. 1930. The spontaneous culture method for studying the non-symbiotic nitrogenfixing bacteria of soils. Jour. Am. Soc. Agron.22: 642–648.

    CAS  Google Scholar 

  304. —. 1931. Studies on nitrogen fixation in some Iowa soils. Proc. Iowa Acad. Sci.37: 75.

    Google Scholar 

  305. Walkley, J. 1940. Protein synthesis in mature and senescent leaves of barley. New Phytol.39: 362–369.

    Article  CAS  Google Scholar 

  306. Waring, E. J. 1950. Sawdust as a soil improver causes nitrogen deficiency in vegetable crops. Agr. Gaz. New So. Wales61: 73–76.

    CAS  Google Scholar 

  307. Waynick, D. D. andWoodhouse. 1919. By what steps doesAzotobacter fix nitrogen? Cal. Agr. Exp. Sta., Ann. Rpt.1918-1919: 62–63.

    Google Scholar 

  308. Werner, A. R. 1935. The biological activators ofAzotobacter. Compt. Rend. Acad. Sci. [U.R.S.S.]4: 57–60.

    Google Scholar 

  309. —. 1945. On salt resistance ofAzotobacter. Compt. Rend. Acad. Sci. [U.R.S.S.]47: 301–303.

    Google Scholar 

  310. White, J. W. 1940. Nitrogen-fixation microorganisms. Penna. Agr. Exp. Sta., Bull.399: 19–20.

    CAS  Google Scholar 

  311. Willis, W. H. andWalker, R. H. 1931. Anaerobic nitrogen fixation in some Iowa soils. Proc. Iowa Acad. Sci.38: 293–298.

    CAS  Google Scholar 

  312. —. 1934. Metabolism of some nitrogen-fixingClostridia. Iowa Agr. Exp. Sta., Res. Bull.173: 255–284.

    CAS  Google Scholar 

  313. Wilson, B. D. 1921. Nitrogen in the rainwater at Ithaca, N. Y. Soil Sci.11: 101–110.

    Article  CAS  Google Scholar 

  314. Wilson, J. B. andWilson, P. W. 1942. Hydrogen in the metabolism ofAzotobacter. Jour. Bact.44: 250–251.

    CAS  Google Scholar 

  315. ——. 1943. Action of inhibitors on hydrogenase inAzotobacter. Gen. Physiol.26: 277–286.

    Article  CAS  Google Scholar 

  316. Wilson, J. K. 1934. Longevity ofRhizobium japonicum in relation to its symbiont on the soil. New York (Cornell) Agr. Exp. Sta., Mem.162: 1–11.

    Google Scholar 

  317. — andNair, K. M. 1948. The latitude between the pH values of nodules and the tissues of leguminous plants. Soil Sci. Soc. Am., Proc.12: 243–245.

    Article  CAS  Google Scholar 

  318. Wilson, P. W. 1935. The carbohydrate-nitrogen relation in symbiotic nitrogen fixation. Wisc. Agr. Exp. Sta., Res. Bull.129: 1–40.

    Google Scholar 

  319. —. 1937. Symbiotic nitrogen-fixation by the Leguminosae. Bot. Rev.3: 365–399.

    Article  CAS  Google Scholar 

  320. —,Lee, S. B. andWyss, O. 1941. Mechanism of symbiotic nitrogen fixation. V. Nature of inhibition by hydrogen. Jour. Biol. Chem.139: 91–101.

    CAS  Google Scholar 

  321. —,Burris, R. H. andCoffee, W. B. 1943. Hydrogenase and symbiotic nitrogen fixation. Jour. Biol. Chem.147: 475–481.

    CAS  Google Scholar 

  322. —,Hull, J. F. andBurris, R. H. 1943. Competition between free and combined nitrogen in nutrition ofAzotobacter. Proc. Nat. Acad. Sci.29: 289–294.

    Article  PubMed  CAS  Google Scholar 

  323. — andBurris, R. H. 1944. Carbon monoxide as an inhibitor of nitrogen fixation by the algaNostoc muscorum. Jour. Bact.47: 410–411.

    Google Scholar 

  324. ——. 1947. The mechanism of biological nitrogen fixation. Bact. Rev.11: 41–73.

    PubMed  CAS  Google Scholar 

  325. Winogradsky, S. andWinogradsky, H. 1933. Études sur la microbiologie du sol. VIL Nouvelles recherches sur les organisms de la nitrification Ann. Inst. Pasteur50: 350–432.

    Google Scholar 

  326. Withers, W. A. andFraps, C. S. 1902. Nitrification in different soils. Agr. Exp. Sta., 25th Ann. Rep.1902: 31–41.

    Google Scholar 

  327. Wood, J. G. 1945. Nitrogenous constituents of plants. Ann. Rev. Biochem.14: 665–684.

    Article  CAS  Google Scholar 

  328. Wyss, O. andWilson, P. W. 1941. Mechanism of biological nitrogen fixation. VI. Inhibition ofAzotobacter by hydrogen. Proc. Nat. Acad. Sci.27: 162–168.

    Article  PubMed  CAS  Google Scholar 

  329. —,Lind, C. J., Wilson, J. B. andWilson, P. W. 1941. Mechanism of biological nitrogen fixation. VII. Molecular hydrogen and the pN2 function ofAzotobacter. Biochem. Jour.35: 845–854.

    CAS  Google Scholar 

  330. — andWyss, M. B. 1950. Mutants ofAzotobacter which do not fix nitrogen. Jour. Bact.59: 287–291.

    CAS  Google Scholar 

  331. Yegian, H. M. andEisenmenger, W. S. 1940. Effect of arsenious oxide, arsenic oxide and antimony oxide on soil and plant growth. Mass. Agr. Exp. Sta., Ann. Rep.1939: 11.

    Google Scholar 

  332. Yoshimura, K. 1922. Nitrification inCycas revoluta. Wiss. Mitt. Landu. Forstw. Hochschule Kagoshima5: 35–39.

    CAS  Google Scholar 

  333. Zobell, C. E. 1946. Marine microbiology. 208 pp.

  334. Zonn, S. V. 1940. Dynamics of nitrogen compounds in cultivated soils of sand deserts. Pedology [U.S.S.R.]1940: 68–80.

    Google Scholar 

  335. Zoond, A. 1926. The relation of combined nitrogen to the physiological activity ofAzotobacter. Brit. Jour. Exp. Biol.4: 105–113.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was completed as background for an original investigation made possible by a grant from The Society of Sigma Xi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shields, L.M. Nitrogen sources of seed plants and environmental influences affecting the nitrogen supply. Bot. Rev 19, 321–376 (1953). https://doi.org/10.1007/BF02861829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861829

Keywords

Navigation