Skip to main content
Log in

Enhanced resistance to bacterial infection byErwinia carotovora subsp.atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Blackleg and soft rot diseases, caused by the bacteriumErwinia carotovora, are among the diseases that cause important losses in culture and storage of potato. In this paper, we introduced bacterial resistance into potato, via genes encoding for proteins with antibacterial activity. For this purpose, potato clones were transformed either with the gene encoding the acidic attacin protein fromHyalophora cecropia, or with the gene encoding the cecropin analog peptide SB37. These clones were evaluated for soft rot and blackleg resistance, after inoculation with the bacterial strainErwinia carotovora subsp.atroseptica T7. Results reported in this paper indicate that a considerable percentage of the potato clones (15–22%) showed increased resistance to bacterial infection, revealed by reduced severity of blackleg or soft rot symptoms. Expression of the transgenes was demonstrated in some of the clones by Northern blot analysis. This is the first report indicating that expression of the gene encoding for an attacin protein and for the cecropin SB-37 peptide in transgenic potato confers increased resistance to bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Allefs, S.J.H.M., D.E.A. Florack, C. Hoogendoorn, and W.J. Stiekema. 1995.Erwinia soft rot resistance of potato cultivars transformed with a gene construct coding for antimicrobial peptide cecropin B is not altered. Am Potato J 72:437–445.

    Article  CAS  Google Scholar 

  • Allefs, S.J.H.M., E.R. De Jong, D.E.A. Florack, C. Hoogendoorn, and W.J. Stiekema 1996.Erwinia soft rot resistance of potato cultivars expressing antimicrobial peptide tachyplesin I. Mol Breeding 2:97–105.

    Article  CAS  Google Scholar 

  • Amasino, R.M. 1986. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem 152:304–307.

    Article  PubMed  CAS  Google Scholar 

  • Ausubel, F.M. 1996. (ed.) Current Protocols in Molecular Biology, John Willey and Sons, Inc. pp. 2–2.3.3.

  • Beachy, R.N. 1997. Mechanism and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M., W. Barnes, and M-D. Chilton. 1983. Structure and transcrition of nopaline synthase gene region of T-DNA. Nucl Acids Res 11:369–385.

    Article  PubMed  CAS  Google Scholar 

  • Boman, H.G., I. Faye, P. Hofsten, K. Kockum, J-Y. Lee, K.G. Xanthopulos, H. Bennich, A. Engström, R. B. Merrifield, and D. Andreu 1985. On the primary structures of lysozyme, cecropins and attacins fromHyalophora cecropia. Develop Comp Immunol 9:551–558.

    Article  CAS  Google Scholar 

  • Boman, H.G. 1995. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92.

    Article  PubMed  CAS  Google Scholar 

  • Broekaert, W.F., F.R.G. Terras, B.P.A. Cammue, and R.W. Osborn. 1995. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., P. Engström, E. T. Palva, and H. Bennich. 1991. Attacin, an antibacterial protein fromHyalophora cecropia, inhibits synthesis of outer membrane proteins inEscherichia coli by interfering withomp gene transcription. Infect Immunol 59:3040–3045.

    CAS  Google Scholar 

  • Carmona, M.J., A. Molina, J.A. Fernández, J.J. López-Fando, and F. García-Olmedo. 1993. Expression of the α-thionin gene from barley in tobacco confers enchanced resistance to bacterial pathogens. Plant J 3:457–462.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, B., J. Fink, R.B. Merrifield, and D. Mauzerall. 1988. Channelforming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85:5072–5076.

    Article  PubMed  CAS  Google Scholar 

  • Destéfano-Beltran, L., P. Nagpala, M.S. Cetiner, J.H. Dodds, and J.M. Jaynes. 1990. Enhancing bacterial and fungal disease resistance in plants: application to potato.In: Vayda, M.E. and W.D. Park (Eds.). The molecular and cellular biology of the potato. C.A.B. International Publishers, Oxon, UK pp. 205–221.

    Google Scholar 

  • Düring, K., P. Porsch, M. Fladung, and H. Lörz. 1993. Transgenic potato plants resistant to the phytopathogenic bacteriumErwinia carotovora. Plant J 3:587–598.

    Article  Google Scholar 

  • Düring, K. 1996. Genetic engineering for resistance to bacteria in transgenic plants by introduction of foreign genes. Mol Breeding 2:297–305.

    Article  Google Scholar 

  • Elphinstone, J.G. and M.C. Perombelon. 1986. Contamination of potatoes byErwinia carotovora during grading. Plant Pathol 35:25–33.

    Article  Google Scholar 

  • Engström, P., A. Carlsson, A. Engström, Z-J. Tao, and H. Bennich. 1984a. The antibacterial effect of attacins from the silk mothHyalophora cecropia is directed against the outer membrane ofEscherichia coli. EMBO J 3:3347–3351.

    PubMed  Google Scholar 

  • Engström, A, P. Engström, Z-J. Tao, A. Carlsson, and H. Bennich. 1984b. Insect immunity. The primary structure of the antibacterial protein attacin F and its relation to two native attacins fromHyalophora cecropia. EMBO J 3:2065–2070.

    PubMed  Google Scholar 

  • Fang, G., S. Hammar, and R. Grumet. 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. BioTechniques 13:52–54.

    PubMed  CAS  Google Scholar 

  • Florack, D., S. Allefs, R. Bollen, D. Bosch, B. Visser, and W. Stiekema. 1995. Expression of giant silkmoth cecropin B genes in tobacco. Transgenic Res 4:132–141.

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson, G.H., D-A. Lidholm, B. Asling, R. Gan, and H.G. Boman. 1991. The crecropin locus. Cloning and expression of a gene cluster encoding three antibacterial peptides inHyalophora cecropia. J Biol Chem 266:11510–11517.

    PubMed  CAS  Google Scholar 

  • Gunne, H., M. Hellers, and H. Steiner. 1990. Structure of preproattacin and its insect cells infected with a recombinant baculovirus. Eur J Biochem 187:699–703.

    Article  PubMed  CAS  Google Scholar 

  • Hightower, R., C. Baden, E. Penzes, and P. Dunsmuir. 1994. The expression of cecropin peptide in transgenic tobacco does not confer resistance toPseudomonas syringae pv.tabaci. Plant Cell Rep 13:295–299.

    Article  CAS  Google Scholar 

  • Hultmark, D., A Engström, H. Bennich, R. Kapur, and H.G. Boman. 1982. Insect Immunity. Isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Hultmark, D. 1993. Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet 9:178–183.

    Article  PubMed  CAS  Google Scholar 

  • Jaynes, J.M., P. Nagpala, L. Destéfano-Beltrán, J.H. Huang, J.H. Kim, T. Denny, and S. Cetiner. 1993. Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused byPseudomonas solanacearum. Plant Science 89:43–53.

    Article  CAS  Google Scholar 

  • Jolies, P. and J. Jolles. 1984. What’s new in lysozyme research? Mol Cell Biochem 63:165–189.

    Google Scholar 

  • Kay, R., A Chan, M. Daaly, and J. McPherson. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302.

    Article  PubMed  CAS  Google Scholar 

  • Logemann, J., J. Schell, and L. Willmitzer. 1987. Improved mehtod for the isolation of RNA from plant tissues. Anal Biochem 163:16–20.

    Article  PubMed  CAS  Google Scholar 

  • Mills, D. and F.A. Hammerschlag. 1993. Effect of cecropin B on peach pathogens, protoplasts, and cells. Plant Sci 93:143–150.

    Article  CAS  Google Scholar 

  • Mills, D., F.A. Hammerschlag, R.O. Nordeen, and L.D. Owens. 1994. Evidence for the breakdown of cecropin B by proteinases in the intercellular fluid of peach leaves. Plant Sci 104:17–22.

    Article  CAS  Google Scholar 

  • Molina, A., P. Ahl-Goy, A. Fraile, R. Sanchez-Monge, and F. García-Olmedo. 1993a Inhibition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Sci 92:169–177.

    Article  CAS  Google Scholar 

  • Molina, A., A. Segura, and F. García-Olmedo 1993b. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316:119–122.

    Article  PubMed  CAS  Google Scholar 

  • Molina, A. and F. García-Olmedo. 1997. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479.

    Article  CAS  Google Scholar 

  • Nordeen, R.O., S.L. Sinder, J.M. Jaynes, and L.D. Owens. 1992. Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogens. Plant Sci 82:101–107.

    Article  CAS  Google Scholar 

  • Okada, M. and S. Natori. 1985. Inophore activity of sarcotoxin I, a bactericidal ofSarcophaga peregrina. Biochem J 260:453–458.

    Google Scholar 

  • Rosetto, M., A.G.O. Manetti, D. Marchini, R. Dallai, J.L. Telford, and C.T. Baldari. 1993. Sequences of two cDNA clones from the medflyCeratitis capitata encoding antibacterial peptides of the cecropin family. Gene 134:241–243.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual, 2nd Edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory. A.1 pp.

    Google Scholar 

  • Schaad, N.W. 1988. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 2nd Edition. The American Phytopathological Society, 3340 Pilot Knob Road, St. Paul, Minnesota 55121, USA. 164 pp.

    Google Scholar 

  • Shah, D.M. 1997. Genetic engineering for fungal and bacterial diseases. Curr Opin Biotechnol 8:208–214.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A, T-H. Kao, and J-J. Lin. 1993. Transformation ofAgrobacterium tumefaciens with T-DNA vectors using high-voltage electroporation. FOCUS 15:84–87.

    Google Scholar 

  • Sun, S-C., I. Lindström, J-Y. Lee, and I. Faye. 1991. Structure and expression of the attacin genes inHyalophora cecropia. Eur J Biochem 196:247–254.

    Article  PubMed  CAS  Google Scholar 

  • Wade, D., A Boman, B. Wahlin, C.M. Drain, D. Andreu, H.G. Boman, and R.B. Merrifield. 1990. All D aminoacid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci 87:4761–4765.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., B.J. Shortt, E.B. Lawrence, E.B. Levine, K.C. Fitzsimmons, and D.M. Shah. 1995. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loreto Holuigue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arce, P., Moreno, M., Gutierrez, M. et al. Enhanced resistance to bacterial infection byErwinia carotovora subsp.atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am. J. Pot Res 76, 169–177 (1999). https://doi.org/10.1007/BF02853582

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02853582

Additional Key Words

Navigation