Skip to main content
Log in

Identification of genetic factors influencing chip color in diploid potato (Solanum spp.)

  • Published:
American Potato Journal Aims and scope Submit manuscript

Abstract

A genetic map was constructed with a combination of isozymes, restriction fragment length polymorphisms (RFLPs) and randomly amplified polymorphic DNA (RAPDs) to apply quantitative trait loci (QTL) analysis to identify genetic factors that contribute to chip color in potato. The diploid population used was a cross between aSolanum tuberosum haploid andS. chacoense hybrid used as female parent and aS. phureja clone used as male. Chip color was determined visually on samples fried from tubers stored at 10C. On a scale of 1 (light color) to 10 (dark color), the population ranged from 2 to 8 while the parents average chip color was 3.5. Based upon one-way ANOVAs (P < 0.05), 13 genetic markers showed significant associations which represent a total of six QTLs. A multiple locus model based upon the markers that have the largest effect per QTL explained 43.5% of the phenotypic variation for chip color in the population and increased to 50.5% when one significant epistatic interaction was included in the model. All the significant marker associations were identifed in theS. tuberosum-S. chacoense hybrid. Through preliminary data, the results of this study suggest that additive effects contribute a significant portion of the genetic variation for chip color. The identification of these QTLs for chip color variation provides the means to apply marker-assisted selection to introgress these genes into the cultivated potato germplasm.

Compendio

Se construyó un mapa genético con una combinacion de isozimas, polimorfismos de restricción de la longitud de los fragmentes (RFLPs) y DNA polimórfico amplificado al azar (RAPDs), para aplicar el análisis de loci de caracteristicas cuantitativas (QTL) en la identificatión de factores genéticos que contribuyen al color de la papa en la fritura a la inglesa. La población diploide utilizada fue un cruzamiento entre un haploideSolanum tuberosum y un híbridoS. chacoense, usado como progenitor femenino, y un cloneS. phureja usado como macho. Se determinó visualmente el color de la papa frita a la inglesa sobre muestras fritas de tubérculos almacenados a 10 C. En una escala de 1 (color claro) a 10 (color oscuro), la población varió de 2 a 8, mientras que el color en los progenitores promedió 3.5. Basándose en ANOVAs de un solo sentido (P < 0.05), 13 marcadores genéticos mostraron asociaciones significativas que representan un total de seis QTLs. Un modelo de locus múltiples, basado en los marcadores que tuvieron el mayor efecto por QTL, explicó el 43.5% de la variación fenotípica de la población, para el color de la papa en fritura a la inglesa y se incrementó a 50.5% cuando se incluyó en el modelo una interacción epistática significativa. Se identificaron todas las asociaciones significativas de los marcadores en el híbridoS. tuberosum-S. chacoense. A través de la información preliminar, los resultados de este estudio sugieren que los efectos aditivos contribuyen en proporción significativa en la variación genética para el color de la papa frita a la inglesa. La identificación de estos QTLs, para variación del color en la fritura, provee los medios para aplicar la selección apoyada por marcadores en la introgresión de estos genes en el germoplasma de papa cultivada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Accatino, P.L. 1973. Inheritance of the potato chip color at the diploid and tetraploid levels of ploidy. Ph.D. Thesis, Univ. Wisconsin. 62 p.

  2. Bonierbale, M., R. Plaisted and S.D. Tanksley. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095–1103.

    PubMed  Google Scholar 

  3. Cunningham, C.E. and F.J. Stevenson. 1963. Inheritance of factors affecting potato chip color and their association with specific gravity. Am Potato J 40: 253–265.

    Google Scholar 

  4. Freyre, R. and D.S. Douches. 1994. Isoenzymatic identification of quantitative traits in crosses between heterozygous parents: Mapping tuber traits in diploid potato (Solarium spp). Theor Appl Genet 87(7): 764–772.

    Article  CAS  Google Scholar 

  5. Freyre, R., S. Warnke, B. Sosniski and D.S. Douches. 1994. Quantitative trait loci analysis of tuber dormancy in diploid potato (Solanum spp). Theor Appl Genet (in press).

  6. Freyre, R. and D. Douches. 1993. Assessment of molecular marker technology for quantitative trait loci analysis in diploid potato. Am Potato J 70: 811 (Abstr).

    Google Scholar 

  7. Gebhardt, C. 1994. RFLP mapping in potato of qualitative and quantitative genetic loci conferring resistance to potato pathogens. Am Potato J 71(5): 339–346.

    CAS  Google Scholar 

  8. Gebhardt, C., E. Ritter, A. Barone, T. Debener, B. Walkemeier, U. Schachtschabel, H. Kaufmann, R.D. Thompson, M.W. Bonierbale, M.W. Ganal, S.D. Tanksley and F. Salamini. 1991. RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83: 49–57.

    Article  Google Scholar 

  9. Gebhardt, C., E. Ritter, T. Debener, U. Schachtschabel, B. Walkemeier, H. Uhrig and F. Salamini. 1989. RFLP analysis and linkage mapping inSolanum tuberosum. Theor Appl Genet 78: 65–75.

    Article  Google Scholar 

  10. Habib, A.T. and H.D. Brown. 1957. Role of reducing sugars and amino acids in the browning of potato chips. Food Technology 11: 85–89.

    CAS  Google Scholar 

  11. Hoover, E.F. and P.A. Xander. 1961. Potato composition and chipping quality. Am Potato J 38: 163–170.

    CAS  Google Scholar 

  12. Hughes, J.C. and T.J. Fuller. 1984. Fluctuations in sugars in cv. Record during extended storage at 10C. Potato Res 27: 229–236.

    Article  Google Scholar 

  13. Iritani, W.M. and L.D. Weiler. 1980. Sugar development in potatoes. Ext Bull 0717. Wash Agr Expt Station, Pullman.

    Google Scholar 

  14. Johansen, R.H., J.T. Schulz and J.E. Huegelet. 1969. Norchip, a new early maturing chipping variety with high total solids. Am Potato J 46: 254–258.

    Google Scholar 

  15. Keim, P., B.W. Diers and R.C. Shoemaker. 1990. Genetic analysis of soybean hard seediness with molecular markers. Theor Appl Genet 79: 465–469.

    Article  Google Scholar 

  16. Loiselle, F., G.C.C. Tai and B.R. Christie. 1990. Genetic components of chip color evaluated after harvest, cold storage, and reconditioning. Am Potato J 67: 633–646.

    Article  Google Scholar 

  17. Paterson, A.H., S. Damon, J.D. Hewitt, D. Zamir, H.D. Rabinowitch, E.S. Lincoln, E.S. Lander and S.D. Tanksley. 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127: 181–197.

    PubMed  CAS  Google Scholar 

  18. Pavek, J.J., D.L. Corsini, S.L. Love, D.C. Hane, D.G. Holm, M.W. Martin, A.R. Mosley and R.E. Thornton. 1991. Gemchip: A new potato variety with chipping quality and verticillium resistance for the western U.S. Am. Potato J 68: 461–466.

    Google Scholar 

  19. Pereira, A. da S., R.H. Coffin, R.Y. Yada and V.S. Machado. 1993. Inheritance patterns of reducing sugars in potato tubers after storage at 12C and 4C followed by reconditioning. Am Potato J. 70: 71–76.

    Article  CAS  Google Scholar 

  20. Quiros, C.F., A. Ceada, A. Georgescu and J. Hu. 1993. Use of RAPD markers in potato genetics: segregations in diploid and tetraploid families. Am Potato J 70: 35–42.

    Article  CAS  Google Scholar 

  21. Ritter, E., T. Debener, A. Barone, F. Salamini and C. Gebhardt. 1991. RFLP mapping on potato chromosomes of two genes conferring resistance to potato virus X (PVX). Mol Gen Genet 227: 81–85.

    Article  PubMed  CAS  Google Scholar 

  22. Shallenberger, R.S., O. Smith and R.H. Treadway. 1959. Role of sugars in the browning reaction in potato chips. Ag Food Chem 7: 274–277.

    Article  CAS  Google Scholar 

  23. Stevenson, F.J., R.V. Akeley and C.E. Cunningham. 1964. The potato—Its genetic and environmental variability. Am Potato J 41: 46–53.

    Google Scholar 

  24. Talbut, W.F. and O. Smith. 1975. Potato Processing. 3rd ed. Avi Publishing Co., Inc.

  25. Tanksley, S.D., N.D. Young, A.H. Paterson and M.W. Bonierbale. 1989. RFLP mapping in plant breeding: New tools for an old science. Biotechnology 7: 257–264.

    Article  CAS  Google Scholar 

  26. Van Den Berg,J.H., M.W. Bonierbale, E.E. Ewing and R.L. Plaisted. 1993. Genetic mapping of loci associated with earliness of tuberization and tuber dormancy inSolanum tuberosum andS. berthaultii. Third International Symposium on the Molecular Biology of the Potato, July 25–30, 1993, Santa Cruz, California. p 5.

  27. Watada, A.E. and R. Kunkel. 1955. The variation in reducing sugar content in different varieties of potatoes. Am Potato J 32: 132–140.

    CAS  Google Scholar 

  28. Weaver, M.L. and H. Timm. 1983. Significance of the fructose/glucose ratio in screening potato breeding lines with processing potential. Am Potato J 60: 329–338.

    CAS  Google Scholar 

  29. Webb, R.E., D.R. Wilson, J.R. Shumaker, B. Graves, M.R. Henninger, J. Watts, J.A. Frank, and H.J. Murphy. 1978. Adantic: A new potato variety with high solids, good processing quality, and resistance to pests. Am. Potato J 55: 141–145.

    Google Scholar 

  30. Yencho, G.C., M.W. Bonierbale, W.M. Tingey and R.L. Plaisted. 1993. Genetic mapping of traits associated with resistance to the Colorado Potato Beetle. Am Potato J 70: 858 (Abstr).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

former Ph.D. student

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douches, D.S., Freyre, R. Identification of genetic factors influencing chip color in diploid potato (Solanum spp.). American Potato Journal 71, 581–590 (1994). https://doi.org/10.1007/BF02851523

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02851523

Additional Key Words

Navigation