Skip to main content
Log in

Turbulence and fossil turbulence in oceans and lakes

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Turbulence is defined as an eddy-like state of fluid motion where the intertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-tubulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent-mixing-rates toward the sea surface so that the submerged waste-field could be detected from a space satellite (Bondur and Filatov, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, W. E., 1938. “Red water” along the West coast of the United States in 1938.Science 88: 55–56.

    Article  Google Scholar 

  • Allen, W. E., 1942. Occurrences of “red water” near San Diego.Science 96: 471

    Article  Google Scholar 

  • Allen, W. E., 1943. Red water in La Jolla Bay in 1942.Trans. Amer. Microscop. Soc. 62: 262–264.

    Article  Google Scholar 

  • Allen, W. E., 1946a. “Red Water” in La Jolla Bay in 1945.Trans. Amer Microscop Soc. 65: 149–153.

    Article  Google Scholar 

  • Allen, W. E., 1946b. Significance of “red water” in the sea. Turtox News, Vol. 24, No. 2.

  • Baker, M. A., C. H. Gibson, 1987. Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency.J. Phys. Oceanogr. 17: 101817–101837.

    Article  Google Scholar 

  • Belyaev, V. S., M. M. Lubimtzev, R. V. Ozmidov, 1974. The rate of dissipation of turbulent energy in the upper layer of the ocean.J. Phys. Oceanogr. 5: 499–505.

    Article  Google Scholar 

  • Bondur, V. G., 2003. Aerospace methods applied for modern oceanology (94 p.)In: Lisitsin A. P. M. ed., New Approaches to Oceanology and Marine Geology, Nauka, 648 p. (in Russian)

  • Bondur, V. G., N. N. Filatov, 2003. Study of physical processes: coastal zone for detectinganthropogenic impact by means of remote sensing. Proc. of the 7th Workshop on “Physical Processes in Natural Waters”, 2–5 July, 2003, Russia, Petrozavodsk, p. 98–103.

  • Bondur, V. G., Y. V. Grebeniuk, 2001. Remote indication of anthropogenic influences on marine environment caused by deepened plumes: modeling, experiments. Study of the Earth from space, 6, p. 49–67. (in Russian)

    Google Scholar 

  • Caulfield, C. P., W. R. Peltier, 2000. The anatomy of the mixing transition in homogeneous stratified shear layers.J. Fluid Mech. 413: 1–47.

    Article  Google Scholar 

  • Dillon, T. R., 1982. Vertical overturns: A comparison of Thorpe and Ozmidov scales.J. Geophys. Res. 87: 9601–9613.

    Article  Google Scholar 

  • Dillon, T. R., 1984. The energetics of overturning structures: Implications for the theory of fossil turbulence.J. Phys. Oceanogr. 14: 541–549.

    Article  Google Scholar 

  • Fan, Z. S., 2002. Research Fundamentals of Ocean Interior Mixing. Ocean Press, Beijing, China.

    Google Scholar 

  • Fernando, H. J. S., 1988. The growth of a turbulent patch in a stratified fluid.J. Fluid Mech. 190: 55–70.

    Article  Google Scholar 

  • Ferron, B., K. Mercier, K. Speer, A. Gargett, K. Polzen, 1998. Mixing in the Romanche Fracture Zone.J. Phys. Oceanogr. 28: 1929–1945.

    Article  Google Scholar 

  • Finnigan, T. D., D. S. Luther, R. Lukas, 2002. Observations of Enhanced Diapycnal Mixing near the Hawaiian Ridge.J. Phys. Oceanogr. 32: 2988–3002.

    Article  Google Scholar 

  • Frisch, U., 1995. Turbulence: The Legacy of A. N. Kolmogorv. Cambridge University Press, UK.

    Google Scholar 

  • George, R., R. E. Flick, R. T. Guza, 1994. Observations of turbulence in the surf zone.J. Geophys. Res. 99 (C1): 801–810.

    Article  Google Scholar 

  • Gibson, C. H., 1980. Fossil temperature, salinity, and vorticity turbulence in the ocean.In: Nihoul, J., ed., Marine Turbulence, Elsevier Publishing Co., Amsterdam, p. 221–257.

    Google Scholar 

  • Gibson, C. H., 1982a. Alternative interpretations for microstructure patches in the thermocline.J. Phys. Oceanogr. 12: 374–383.

    Article  Google Scholar 

  • Gibson, C. H., 1982b. Fossil Turbulence in the Denmark Strait.J. Geophys. Res. 87 (C10): 8039–8046.

    Article  Google Scholar 

  • Gibson, C. H., 1986. Internal waves, fossil turbulence, and composite ocean Microstructure spectra.J. Fluid Mech. 168: 89–117.

    Article  Google Scholar 

  • Gibson, C. H., 1987. Fossil turbulence and intermittency in sampling oceanic mixing processes.J. Geophys. Res. 92 (C5): 5383–5404.

    Article  Google Scholar 

  • Gibson, C. H., 1990. Turbulence, mixing and microstructure, in Ocean Engineering Science: The Sea, 9, part A, edited by Bernard Le Mahaute and D. M. Hanes, Wiley Interscience, New York, pp. 631–659.

    Google Scholar 

  • Gibson, C. H., 1991a. Kolmogorov similarity hypotheses for scalar fields: sampling Intermittent turbulent mixing in the ocean and galaxy, in Turbulence and stochastic processes: Kolmogorov’s ideas 50 years on. Proceedings of the Royal Society London, Ser. A, 434, 1890, 149–164; http://xxx.lanl.gov. astro-ph/9904269.

    Article  Google Scholar 

  • Gibson, C. H., 1991b. Turbulence, mixing, and heat flux in the ocean main therinocline.J. Geophys. Res. 96 (C7, 20): 403–20,420.

    Google Scholar 

  • Gibson, C. H. 1991c. Fossil two-dimensional turbulence in the ocean, in Turbulent Shear Flows, 7, Ed., F. Durst, W. C. Reynolds, Springer-Verlag, p. 63–78.

  • Gibson, C. H., 1991d. Laboratory, numerical, and oceanic fossil turbulence in rotating and stratified flows.J. Geophys. Res. 96 (C7): 12549–12566.

    Article  Google Scholar 

  • Gibson, C. H., V. Nabatov, R. Ozmidov, 1993. Measurements of turbulence and fossil turbulence near Ampere Seamount.Dynamics of Atmospheres and Oceans 19: 175–204.

    Article  Google Scholar 

  • Gibson, C. H., W. H. Thomas, 1995. Effects of Turbulence Intermittency on Growth Inhibition of a Red Tide Dinoflagellate,Gonyaulax polyedra Stein.J. Geophys. Res. 100 (12):24: 841–24,846.

    Google Scholar 

  • Gibson, C. H., W. H. Schwarz, 1963. The universal equilibrium spectra of turbulent velocity and scalar fields.J. Fluid Mech. 6: 365–386.

    Article  Google Scholar 

  • Gibson, C. H., 1996. Turbulence in the ocean, atmosphere, galaxy and universe, Applied Mechanics Reviews, 49, 299–316; http://xxx.lanl.gov astro-ph/9904260.

    Google Scholar 

  • Gibson, C. H., 1999. Fossil turbulence revisited.J. Marine Systems 21 (1–4), 147–167.

    Article  Google Scholar 

  • Gibson, C. H., 2003a. The First Turbulence, to be published in Flow, Turbulence and Combustion, http://xxx.lanl.gov, astro-ph/0101061.

  • Gibson, C. H., 2003b. Planck-Kerr turbulence, http://xxx. lanl.gov, astro-ph/0304441.

  • Courlay, M. G., S. C. Arendt, D. C. Fritts, J. Werne, 2001 Numerical modeling of initially turbulent wakes with net momentum.Phys. Fluids 13: 3783–3802.

    Article  Google Scholar 

  • Gregg, M. C., 1977. Variations in the intensity of small-scale mixing in the main thermocline.J. Phys. Oceanogr. 7: 436–454.

    Article  Google Scholar 

  • Gregg, M. C., 1987. Diapycnal mixing in the thermocline: A review.J. Geophys. Res. 92 (C5): 5249–5286.

    Article  Google Scholar 

  • Hebert, D., J. N. Moum, C. A. Paulson, D. R. Caldwell, 1992. Turbulence frominternal waves at the equator, Part II: Details of a single event.J. Phys. Oceanogr. 22 (11): 1346–1356.

    Article  Google Scholar 

  • Itsweire, E. C., K. N. Helland, C. W. Van Atta, 1986. The evolution of grid-generated turbulence in a stably stratified fluid.J. Fluid Mech. 162: 299–338.

    Article  Google Scholar 

  • Itsweire, E. C., J. R. Koseff, D. A. Briggs, J. H. Ferziger, 1993. Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean.J. Phys. Oceanogr. 23: 1508–1522.

    Article  Google Scholar 

  • Ivey, G. N., J. Imberger, 1991. On the nature of turbulence in a stratified fluid. Part I: The energetics of mixing.J. Phys. Oceanogr. 21: 650–658.

    Article  Google Scholar 

  • Ivey, G. N., J. R. Koseff, D. A. Briggs, J. H. Ferziger, 1992. Mixing in a stratified shear flow: energetics and sampling. In Center for Turbulence Research, Annual Research Briefs, p. 335–344.

  • Kolmogorov, A. N., 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.Dokl. Akad. Nauk SSSR 30, 301–305.

    Google Scholar 

  • Koh, C. Y., Brooks, Norman H., 1975. Fluid mechanics of Waster-water Disposal in the ocean. Libby, Paul A., Introduction to Turbulence, Taylor and Francis, Bristol PA, 1996.

    Google Scholar 

  • Luketina, D. A., J. Imberger, 1989. Turbulence and entrainment in a buoyant surface plume.J. Geophys. Res. 94 (C9): 12619–12636.

    Article  Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment.Oceanological Acta 1: 493–509.

    Google Scholar 

  • Munk, W., 1966. Abyssal recipes.Deep Sea Res. 13: 707–730.

    Google Scholar 

  • Nasmyth, P. W., 1970. Ocean turbulence, PhD Dissertation, U. Brit. Col., 69p.

  • Oakey, N. S., 1982. Detection of the rate of dissipation for small scale velocity and temperature from microstructure measurements.J. Phys. Oceanogr. 12: 256–271.

    Article  Google Scholar 

  • Panton, R. L., 1984. Incompressible Flow, John Wiley & Sons, New York.

    Google Scholar 

  • Peters, H., M. C. Gregg, T. B. Sanford, 1994. The diurnal cycle of the upper Equatorial ocean: turbulence, fine-scale shear, and mean shear.J. Geophys. Res. 99: 7707–7723.

    Article  Google Scholar 

  • Pope, S. 2000. Turbulent Flows. Cambridge University Press, UK.

    Google Scholar 

  • Prandke, H., T. Neumann, A. Stips, 1988. MSS 86-ein neues Messystem zur Untersuchung der Mikrostruktur der bodennahen Wasserschicht im Meer.Beiträge zur Meereskunde 58: 71–72.

    Google Scholar 

  • Prandke, H., A. Stips, 1998. Microstructure profiler to study mixing and turbulent transport processes. OCEANS’98 Conference proceedings Vol. 1, IEEE 179–183.

    Google Scholar 

  • Richardson, L. F., 1922. Weather Prediction, Cambridge.

  • Riley, J. J., S. J. deBruynKops, 2003. Dynamics of turbulence strongly influenced by buoyancy.Phys. Fluids 15 (7): 2047–2059.

    Article  Google Scholar 

  • Riley, J. J., M. P. Lelong, 2000. Fluid motion in the presence of strong stratification.Annual Review of Fluid Mechanics 32: 613–657.

    Article  Google Scholar 

  • Rohr, J., J. Allen, J. Losee, M. I. Latz, 1997. The use of bioluminescence as a flow diagnostic.Physics Letters A 228 (6): 408–16.

    Article  Google Scholar 

  • Smirnov, S., S. I. Voropayev, 2001. Late-Wake Flows in Stratified Fluids,

  • Smyth, W. D., J. N. Moum, 2000. Length scales of turbulence in stably stratified mixing layers.Phys. Fluids 12: 1327–1342.

    Article  Google Scholar 

  • Smyth, W. D., J. N. Moum, D. R. Caldwell, 2001. The Efficiency of Mixing in Turbulent Patches: Inferences from Direct Simulations and Microstructure Observations.J. Phys. Oceanogr. 31 (8): 1969–1992.

    Article  Google Scholar 

  • Stewart, R. W., 1969. Turbulence and waves in a stratified atmosphere.Radio Science 4 (12): 1269–1278.

    Article  Google Scholar 

  • Stillinger, D. C., K. N. Helland, C. W. van Atta, 1983. Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid.J. Fluid Mech. 131: 91–122.

    Article  Google Scholar 

  • Sverdrup, H. U., M. W. Johnson, R. H. Fleming, 1942. The Oceans, Their Physics, Chemistry, and General Biology, Prentice Hall, Inc., Englewood Cliffs, N. J.

    Google Scholar 

  • Tennekes, J., J. L. Lumley, 1972. A First Course in Turbulence, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Thorpe, S. A., 1977. Turbulence and mixing in a Scottish loch.Philos. Trans. Roy. Soc. London. A286: 125–181.

    Article  Google Scholar 

  • Thorpe, S. A., 1987. Transitional phenomena and the development of turbulence in stratified fluids: A review.J. Geophys. Res. 92: 5231–5248.

    Article  Google Scholar 

  • Toole, J. M., K. L. Polzin, R. W. Schmitt, 1994. Estimates of diapycnal mixing in the abyssal ocean.Science 264: 1120–1123.

    Article  Google Scholar 

  • Thomas, W. H., C. H. Gibson, 1990. Effects of small-scale turbulence on microalgae.J. Appl. Phycology 2: 71–77.

    Article  Google Scholar 

  • Thomas, W. H., C. T. Tynan, C. H. Gibson, 1997. Turbulence-phytoplankton interrelationships, Chapter 5.In: F. E. Round/D. J. Chapman, eds., Progress in Phycological Research, Vol. 12, p. 283–324.

  • Tynan, C. T., 1993. The effects of small-scale turbulence on dinoflagellates, Ph. D. Dissertation, University of California at San Diego, Scripps Institution of Oceanography, 227p.

  • Van Dyke, M., 1982. An Album of Fluid Motion, Parabolic Press, Stanford.

    Google Scholar 

  • Washburn, L., C. H. Gibson, 1982. Measurements of oceanic microstructure using a small conductivity sensor.J. Geophys. Res. 87(C6): 4230–4240.

    Article  Google Scholar 

  • Washburn, L., C. H. Gibson, 1984. Horizontal Variability of Temperature Microstructure in the Seasonal Thermocline during MILE.J. Geophys. Res. 89: 3507–3522.

    Article  Google Scholar 

  • Wijesekera, H. W., T. M. Dillon, 1991. Internal waves and mixing in the upper Equatorial Pacific ocean.J. Geophys. Res.,96: 7115–7125.

    Article  Google Scholar 

  • Wijesekera, H. W., T. M. Dillon, 1997. Shannon entropy as an indicator of age for turbulent overturns in the oceanic thermocline.J. Geophys. Res.,102 (C2): 3279–3291.

    Article  Google Scholar 

  • Winters, K. B., E. A. D’Asaro, 1996. Diascalar flux and the rate of fluid mixing.J. Fluid Mech.,317: 179–193.

    Article  Google Scholar 

  • Winters, K. B., P. N. Lombard, J. J. Riley, E. A. D’Asaro, 1995. Available potential energy and mixing in density stratified fluids.J. Fluid Mech.,289: 115–128.

    Article  Google Scholar 

  • Woods, J. D., 1969. Fossil turbulence.Radio Science 4(12): 1365–1367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, PT., Gibson, C.H. Turbulence and fossil turbulence in oceans and lakes. Chin. J. Ocean. Limnol. 22, 1–23 (2004). https://doi.org/10.1007/BF02842796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842796

Key words

Navigation