Skip to main content
Log in

CO2 processes in an alpine grassland ecosystem on the Tibetan Plateau

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

In this paper, the CO2 concentrations profile from 1.5 m depth in soil to 32 m height in atmosphere were measured from July 2000 to July 2001 in an alpine grassland ecosystem located in the permafrost area on the Tibetan Plateau, which revealed that CO2 concentrations varied greatly during this study period. Mean concentrations during the whole experiment in the atmosphere were absolutely lower than the CO2 concentrations in soil, which resulted in CO2 emissions from the alpine steppe soil to the atmosphere. The highest CO2 concentration was found at a depth of 1.5 m in soil while the lowest CO2 concentration occurred in the atmosphere. Mean CO2 concentrations in soil generally increased with depth. This was the compositive influence of the increasing soil moistures and decreasing soil pH, which induced the increasing biological activities with depth. Temporally, the CO2 concentrations at different layers in air remained a more steady state because of the atmospheric turbulent milking. During the seasonal variations, CO2 concentrations at surface soil interface showed symmetrical patterns, with the lowest accumulation of CO2 occurring in the late winter and the highest CO2 concentration in the growing seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowden R D, 1993. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest.Canadian Journal of Forest Research, 23: 1402–1407.

    Article  Google Scholar 

  • Braswell B H, Schimel D S, Linder Eet al., 1997. The response of global terrestrial ecosystems to interannual temperature variability.Science, 278: 870–872.

    Article  Google Scholar 

  • Bremner J M, 1965. Inorganic forms of nitrogen. In: Black C A (ed.), Methods of Soil Analysis Vol.2., 1179–1237. American Society of Agronomy, Madison.

    Google Scholar 

  • Burton D L, Beauchamp E G, 1994. Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing.Soil Science Society of American Journal, 58: 115–122.

    Article  Google Scholar 

  • Burton A J, Pregitzer K S, Ruess R W, 2002. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes.Oceologia, 131: 559–568.

    Article  Google Scholar 

  • Caspersen J P, Pacala S W, Jenkins J Cet al., 2000. Contributions of land-use history to carbon accumulation in U.S. forests.Science, 290: 1148–1151.

    Article  Google Scholar 

  • Chen Z, Wang S, 2000. The Typical Grassland Ecosystems in China. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Crowley T J, 2000. Causes of climate change over the past 1000 years.Science, 298: 270–277.

    Article  Google Scholar 

  • Davidson E A, Belk E, Boone R D, 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest.Global Change Biology, 4: 217–227.

    Article  Google Scholar 

  • Davidson E A, Trumbore S E, Amundson Ret al., 2000. Soil warming and organic carbon content.Nature, 408: 789–790.

    Article  Google Scholar 

  • Dugas W A, Reicosky D C, Kiniry J R, 1997. Chamber and micrometeorological measurements of CO2 and H2O fluxes for three C-4 grasses.Agricultural and Forest Meteorology, 83(1-2): 113–133.

    Article  Google Scholar 

  • Ellert B H, Janzen H H, 1999. Short-term influence of tillage on CO2 fluxes from a semi-arid soil on the Canadian Prairies.Soil Biology & Biochemistry, 50: 21–32.

    Google Scholar 

  • Falkowski P, Scholes R J, Boyle Eet al., 2000. The global carbon cycle: a test of our knowledge of Earth as a system.Science, 290: 291–296.

    Article  Google Scholar 

  • Fans S, Gloor M, Mahlman Jet al., 1998 A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models.Science, 282: 442–446.

    Article  Google Scholar 

  • Friedli H, Lotscher H, Oeschgr Het al., 1986. Ice core record of13C/12C ratio of atmospheric CO2 in the past two centuries.Nature, 324: 237–238.

    Article  Google Scholar 

  • Gao Y, 1995. Soil regionalization of the Qinghai-Xizang Plateau.Mountain Res., 13(4): 203–211. (in Chinese)

    Google Scholar 

  • Grace J, Rayment M, 2000. Respiration in the balance.Nature, 404: 819–820.

    Article  Google Scholar 

  • IGBP, 1998. The terrestrial carbon cycle: implication for the Kyoto Protocol.Science, 280: 1393–1394.

    Article  Google Scholar 

  • Kalembasa S J, Jenkinson D S, 1973. A comparative study of titrimetric and gravimetric methods for determination of organic carbon in soil.Journal of Science of Food and Agriculture, 24: 1085–1090.

    Article  Google Scholar 

  • Keeling C D, Whorf T P, Wahlen Met al., 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980.Nature, 375: 666–670.

    Article  Google Scholar 

  • Kelting D L, Burger J A, Edwards G S, 1998. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils.Soil Biology & Biochemistry, 30(7): 961–968.

    Article  Google Scholar 

  • Lashof D A, Ahuja D R, 1990. Relative contributions of greenhouse gas emissions to global wanning.Nature, 344: 529–531.

    Article  Google Scholar 

  • Lekkerkerk L, Lundkvist H, 1990. Decomposition of heterogeneous substrates: An experimental investigation of hypothesis on substrate and microbial properties.Soil Biology & Biochemistry, 22(2): 161–167.

    Article  Google Scholar 

  • Maljanen M, Hyt □nen J, Martikainen P J, 2001. Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils.Plant and Soil, 231: 113–121.

    Article  Google Scholar 

  • Mielnick P C, Dugas W A, Johnson H Bet al., 2001. Net grassland carbon flux over a subambient to superambient CO2 gradient.Global Change Biology, 7:747–754.

    Article  Google Scholar 

  • Monnin E, 2001 Atmospheric CO2 concentrations over the last glacial termination.Science, 291: 112–114.

    Article  Google Scholar 

  • Nadelhoffer K J, Emmett B A, Gundersen Pet al., 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests.Nature, 398: 145–148.

    Article  Google Scholar 

  • Neftel A, Moor E, Oeschger Het al., 1985. Evidence from ploarice cores for the increase in atmosphere CO2 in the past two centuries.Nature, 315: 45–47.

    Article  Google Scholar 

  • Orchard V A, Cook F J, Corderoy D M, 1992. Field and laboratory studies on the relationships between respiration and moisture for two soils of contrasting fertility status.Pedobiologia, 36: 21–33.

    Google Scholar 

  • Parfitt R L, Percival H J, Dahlgren R Aet al., 1997. Soil and solution chemistry under pasture and radiata pine in New Zealand.Plant and Soil, 191: 279–290.

    Article  Google Scholar 

  • Pei Z, Ouyang H, Zhou Cet al., 2003. Fluxes of CO2, CH4 and N2O from alpine grassland in the Tibetan Plateau.Journal of Geographical Sciences, 13(1): 27–34.

    Article  Google Scholar 

  • Raich J W, Schlesinger W H, 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tellus, 44B: 81–99.

    Google Scholar 

  • Rochette P, Flanagan L B, 1999. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13.Soil Science Society of American Journal, 63: 1207–1213.

    Article  Google Scholar 

  • Rodhe H, 1990. A comparison of the contribution of various gases to the greenhouse effect.Science, 248: 1217–1219.

    Article  Google Scholar 

  • Rosenfeld P E, 2001. Effect of high carbon ash on biosolids odor emissions and microbial activity.Water, Air and Soil Pollution, 131: 245–260.

    Article  Google Scholar 

  • Schimel D S, Melillo J, Tian Het al., 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in United States.Science, 287: 2004–2006.

    Article  Google Scholar 

  • Sommerfeld R A, Mosier A R, Musselman R C, 1993. CO2, CH4, and N2O flux through a Wyoming snowpack and implications for global budgets.Nature, 361: 140–142.

    Article  Google Scholar 

  • Sun H, Zheng D, 1998. Formation and Evolution of the Qinghai-Xizang Plateau. Shanghai: Shanghai Science and Technology Press; Guangzhou: Guangdong Press. (in Chinese)

    Google Scholar 

  • Tester C F, 1988. Role of soil and residue microorganisms in determining the extent of residue decomposition in soil.Soil Biology & Biochemistry, 20: 915–919.

    Article  Google Scholar 

  • Tett S F B, Stott P A, Allen M Ret al., 1999. Causes of twentieth-century temperature change near the Earth’s surface.Nature, 399: 569–572.

    Article  Google Scholar 

  • Tian H, Melillo J M, Kicklighter D Wet al., 1998. Effect of interannual climate variability on carbon srorage in Amazonian ecosystems.Nature, 396: 664–667.

    Article  Google Scholar 

  • Tufekcioglu A, Raich J W, Isenhart T Met al., 2001. Soil respiration within riparian buffers and adjacent crop fields.Plant and Soil, 229: 117–124.

    Article  Google Scholar 

  • Tufekcioglu A, Raich J W, 1999. Fine root dynamics, coarse root biomass, root distribution, and soil respiration in a multispecies riparian buffer in central Iowa, USA.Agroforestry Systems, 44: 163–174.

    Article  Google Scholar 

  • Tuittila E S, Komulainen V M, Vasander Het al., 2000. Methane dynamics of a restored cut-away peatland.Global Change Biology, 6: 569–581.

    Article  Google Scholar 

  • Updegraff K, Bridgham S D, Pastor Jet al., 1998. Hysteresis in the temperature response of carbon dioxide and methane production in peat soils.Biogeochemistry, 43: 253–272.

    Article  Google Scholar 

  • Valentini R, Matteucci G, Dolman A Jet al., 2000. Respiration as the main determinant of carbon balance in European forests.Nature, 404: 861–865.

    Article  Google Scholar 

  • Waddington J M, Rotenberg P A, Warren F J, 2001. Peat CO2 production in a natural and cutover peatland: Implications for restoration.Biogeochemistry, 54: 115–130.

    Article  Google Scholar 

  • Whalen S C, Reeburgh W S, 1990. Consumption of atmospheric methane to subambient concentration by tundra soils.Nature, 346: 160–162.

    Article  Google Scholar 

  • Xu M, Qi Y, 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young pongdersoa pine plantation in northern California.Global Change Biology, 7: 667–677.

    Article  Google Scholar 

  • Zak D R, Hohnes W E, MacDonald N Wet al., 1999. Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization.Soil Science Society of American Journal, 63: 575–584.

    Article  Google Scholar 

  • Zheng D, Zhang R, Yang Q, 1979. On the natural zonation in the Qinghai-Xizang Plateau.Acta Geographica Sinica, 34(1): 1–11. (in Chinese)

    Google Scholar 

  • Zheng D, Zhu L, 2000. Formation and Evolution, Environmental Changes and Sustainable Development on the Tibetan Plateau. Beijing: Science Press.

    Google Scholar 

  • Zogg G P, Zak D R, Burton A Jet al., 1996. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability.Tree Physiology, 16: 719–729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhiyong Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhiyong, P., Hua, O., Caiping, Z. et al. CO2 processes in an alpine grassland ecosystem on the Tibetan Plateau. J. Geogr. Sci. 13, 429–437 (2003). https://doi.org/10.1007/BF02837881

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02837881

Key words

Navigation