Skip to main content
Log in

On the best approximation matrix problem and matrix Fourier series

  • Published:
Approximation Theory and its Applications

Abstract

In this paper the concept of positive definite bilinear matrix moment functional, acting on the space of all the matrix valued continuous functions defined on a bounded interval [a,b] is introduced. The best approximation matrix problem with respect to such a functional is solved in terms of matrix Fourier series. Basic properties of matrix Fourier series such as the Riemann—Lebesgue, matrix property and the bessel—parseval matrix inequality are proved. The concept of total set with respect to a positive definite matrix functional is introduced, and the totallity of an orthonormal sequence of matrix polynomials with respect to the functional is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelsson, O., Iterative Solution Methods, Cambridge Univ. Press, Cambridge, 1994.

    MATH  Google Scholar 

  2. Basu, S. and Rose, N. K., Matrix Stieltjes Series and Network Models, SIAM J. Math. Anal. 14, N. 2 (1983), pp. 209–222.

    Article  MATH  MathSciNet  Google Scholar 

  3. Davis, P. J., Interpolation and Approximation, Dover, New York, 1975.

    MATH  Google Scholar 

  4. Delsarte, Ph., Genin, Y. and Kamp, Y., Orthogonal polynomial matrices on the unit circle, IEEE Trans. Circuits and Systems, 25(1978), pp. 145–160.

    Article  Google Scholar 

  5. Delves, L. M., and Mohamed, J. L., Computational Methods for Integral Equations, Cambridge Univ. Press, Cambridge, 1985.

    MATH  Google Scholar 

  6. Dunford, N., and Schwartz, J., Linear Operators, Vol I, Interscience, New York, 1957.

    Google Scholar 

  7. Duran, A. J., and Assche, W. Van, Orthogonal matrix polynomials and higher order recurrence relations, Linear Algebra and Appl. 219 (1995), pp. 261–280.

    Article  MATH  MathSciNet  Google Scholar 

  8. Duran, A. J., On orthogonal matrix polynomials with respect to a positive definite matrix of measures, Canadian J. of Math. 47(1995), pp. 88–112.

    MATH  MathSciNet  Google Scholar 

  9. Duran, A. J., and López-Rodriguez, P., Orthogonal matrix polynomials: zeros and Blumenthal's theorem, J. of Approx. Theory. 84 (1996), pp. 96–118.

    Article  MATH  Google Scholar 

  10. Folland, G. B., Fourier Analysis and its Applications, Wadsworth & Brooks, Pacific Grove, California, 1992.

    MATH  Google Scholar 

  11. Folland, G. B., Real Analysis. Modern Techniques and Their Applications, John-Wiley, New York, 1984.

    MATH  Google Scholar 

  12. Geronimo, J. S., Matrix orthogonal polynomials in the unit circle, J. Maths. Phys, 22(7), (1981), pp. 1359–1365.

    Article  MATH  MathSciNet  Google Scholar 

  13. Godement, R., Cours D'Algebre, Hermann, Paris, 1967.

    Google Scholar 

  14. Golub, G. and Loan, C.F. Van, Matrix Computations 2nd Ed. Johns Hopkins Univ. Press, Baltimore, 1989.

    MATH  Google Scholar 

  15. Hammerlin, G. H., and Hoffman, K. F., Numerical Mathematics, Springer Verlag, New York, 1991.

    Google Scholar 

  16. Hille, E., Lectures on Ordinary Differential Equations, Addison-Wesley, New York, 1969.

    MATH  Google Scholar 

  17. Jódar, L., Company, R. and Navarro, E., Laguerre matrix polynomials and systems of second order differential equations, Appl. Numer. Maths, 15, N. 1 (1994), pp. 53–64.

    Article  MATH  Google Scholar 

  18. Jódar, L., Company, R. and Ponsoda, E., Orthogonal matrix polynomials and systems of second order differential equations, Differential Equations and Dynamical Systems, 3No 3(1995), pp. 269–288.

    MATH  MathSciNet  Google Scholar 

  19. Jódar, L., Defez, E. and Ponsoda, E., Matrix quadrature integration and orthogonal matrix polynomials, Congressus Numerantium, 106(1995), pp. 141–153.

    MATH  MathSciNet  Google Scholar 

  20. Jódar, L., and Company, R., Hermite matrix polynomials and second order matrix differential equations, J. Approx. Theory Appl, 12 No. 1(1996), pp. 20–30.

    MATH  Google Scholar 

  21. Jódar, L., Defez, E. and Ponsoda, E., Orthogonal matrix polynomials with respect to linear matrix moment functionals: Theory and applications, J. Approx. Theory Appl, 12 No. 1 (1996), pp. 96–115.

    MATH  Google Scholar 

  22. Jódar, L. and Defez, E., Orthogonal matrix polynomials with respect to a conjugate bilinear matrix moment functional: Basic theory, J. Approx. Theory Appl, 13 No. 1 (1997), 66–79.

    Google Scholar 

  23. Joula, D. C. and Karanjian, N., Bauer type factorization of positive matrices and theory of matrix polynomials on the unit circle. IEEE Trans. Circuit and Systems, 25 (1978), pp. 57–69.

    Article  Google Scholar 

  24. Marcellán, F. and Sansigre, G., On a class of matrix orthogonal polynomials on the real line, Linear Algebra Appl., 181 (1993), pp. 97–109.

    Article  MATH  MathSciNet  Google Scholar 

  25. Ortega, J. M., Numerical Analysis A Second Course, Academic Press, New York, 1972.

    MATH  Google Scholar 

  26. Rodman, L., Orthogonal Matrix Polynomials, P. Nevai Ed, in Orthogonal Polynomials: Theory and Practice, Kluwer Academic Publ. 1990, pp. 345–362.

  27. Osilenker, B. P., Fourier series in orthonormal matrix polynomials, Izvestija VUZ. Mathematika, Vol. 32 No. 2 (1988), 71–83.

    MATH  MathSciNet  Google Scholar 

  28. Saks S. and Zygmund, A., Analytic Functions, Elsevier, Amsterdam, 1971.

    Google Scholar 

  29. Sinap, A. and Assche, W. Van, Polynomial interpolation and Gaussian quadrature for matrix-valued functions, Linear Algebra Appl. 207 (1994) pp. 71–114.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jódar, L., Navarro, E. & Defez, E. On the best approximation matrix problem and matrix Fourier series. Approx. Theory & its Appl. 13, 88–98 (1997). https://doi.org/10.1007/BF02836812

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02836812

Keywords

Navigation