Skip to main content
Log in

Numerical modeling of the induced vorticity effect on the von Kàrmàn vortex street downstream of a circular cylinder

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

On the basis of a solution of the time-dependent Navier-Stokes equations on multiblock computational grids, the phenomenon of significant decay of the von Kàrmàn vortex street downstream of a circular cylinder owing to vorticity generation in passive and active vortex cells embedded in the cylinder contour is numerically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Belov, S. A. Isaev, and V. A. Korobkov,Problems and Methods of Calculation of Separated Incompressible Flows [in Russian], Sudostroenie, Leningrad (1989).

    Google Scholar 

  2. A. V. Bunyakin, S. I. Chernyshenko, and G. Yu. Stepanov, "High-Reynolds-number Batchelor-model asymptotics of a flow past an aerofoil with a vortex trapped in a cavity,"J. Fluid Mech.,358, 283 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Calculation of a low-velocity separated air flow past an airfoil with vortex cells,"Inzh. Fiz. Zh.,71, 1116 (1998).

    Google Scholar 

  4. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Numerical simulation of laminar flow past a cylinder with passive and active vortex cells,"Pisma Zh. Tekhn. Fiz.,24, No. 8, 33 (1998).

    Google Scholar 

  5. V. J. Modi, M. S. U. K. Fernando, and T. Yokozimo, "Moving surface boundary-layer control: studies with bluff bodies and application,"AIAA J.,29, 1400 (1991).

    Article  ADS  Google Scholar 

  6. P. A. Baranov, V. L. Zhdanov, and A. G. Sudakov, "Numerical analysis of the unsteady flow past a cylinder with vorticity induced in the near wake," Lykov Institute of Heat and Mass Transfer, Minsk, Preprint No. 5, (1998).

  7. I. A. Belov and N. A. Kudryavtsev,Heat Transfer and Resistance of Tube Arrays [in Russian], Énergoatomizdat, Leningrad (1987).

    Google Scholar 

  8. A. E. Hamielec and J. D. Raal, "Numerical studies of viscous flow around circular cylinders,"Phys. Fluids,12, 11 (1969).

    Article  MATH  ADS  Google Scholar 

  9. G. K. Batchelor,Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (1967).

    MATH  Google Scholar 

  10. C. H. K. Williamson and A. Roshko, "Measurements of base pressure in the wake of a cylinder at low Reynolds numbers,"Z. Flugwiss. Weltraumforsch.,14, 38 (1990).

    Google Scholar 

  11. C. H. K. Williamson, "Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at a low Reynolds number,"J. Fluid Mech.,206, 579 (1989).

    Article  ADS  Google Scholar 

  12. C. Norberg, "An experimental investigation of the flow around a circular cylinder: influence of aspect ratio,"J. Fluid Mech.,258, 287 (1994).

    Article  ADS  Google Scholar 

  13. B.-K. Min and K.-S. Chang, "A momentum coupling method for the unsteady incompressible Navier-Stokes equations on the staggered grid,"Intern. J. Numer. Meth. Fluids,28, 443 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. X. Lu, C. Dalton, and J. Zhang, "Application of large eddy simulation to flow past a circular cylinder,"Trans. ASME, J. Offshore Mech. Arctic Engng,119, 219 (1997).

    Google Scholar 

Download references

Authors

Additional information

Feodosiya, Sankt-Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 68–74, March–April, 2000.

The study was carried out with the support of the Russian Foundation for Basic Research (projects Nos. 99-01-01115 and 99-01-00772).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, P.A., Isaev, S.A. & Sudakov, A.G. Numerical modeling of the induced vorticity effect on the von Kàrmàn vortex street downstream of a circular cylinder. Fluid Dyn 35, 211–216 (2000). https://doi.org/10.1007/BF02831428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02831428

Keywords

Navigation