Skip to main content
Log in

Charges in gauge theories

  • Review
  • Published:
Pramana Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 1999

Abstract

In this article we investigate charged particles in gauge theories. After reviewing the physical and theoretical problems, a method to construct charged particles is presented. Explicit solutions are found in the abelian theory and a physical interpretation is given. These solutions and our interpretation of these variables as the true degrees of freedom for charged particles, are then tested in the perturbative domain and are demonstrated to yield infra-red finite, on-shell Green’s functions at all orders of perturbation theory. The extension to collinear divergences is studied and it is shown that this method applies to the case of massless charged particles. The application of these constructions to the charged sectors of the standard model is reviewed and we conclude with a discussion of the successes achieved so far in this programme and a list of open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E P Wigner,Ann. Math. 40, 149 (1939)

    Article  MathSciNet  Google Scholar 

  2. S Weinberg,The quantum theory of fields (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  3. D BuchholzPhys. Lett. B174, 331 (1986)

    ADS  MathSciNet  Google Scholar 

  4. P Kulish and L Faddeev,Theor. Math. Phys. 4, 745 (1970)

    Article  Google Scholar 

  5. M Lavelle and D McMullan,Phys. Rep. 279, 1 (1997), hep-ph/9509344

    Article  ADS  Google Scholar 

  6. M Ciafaloni, inQuantum chromodynamics, Edited by A H Mueller (World Scientific, Singapore, 1989)

    Google Scholar 

  7. V D Duca, L Magnea, and G Sterman,Nucl. Phys. B324, 391 (1989)

    Article  ADS  Google Scholar 

  8. For this reason one sometimes speaks of mass singularities

  9. UKQCD, D S Henty, O Oliveira, C Parrinello and S Ryan,Phys. Rev. D54, 6923 (1996), hep-lat/9607014

    ADS  Google Scholar 

  10. S A Gogilidze, A M Khvedelidze, D M Mladenov and H P Pavel,Hamiltonian reduction of SU(2) Dirac Yang-Mills mechanics, (1997), hep-th/9707136

  11. D Maison and D Zwanziger,Nucl. Phys. B91, 425 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  12. H Fröhlich, G Morchio and F Strocchi,Phys. Lett. B89, 61 (1979)

    ADS  Google Scholar 

  13. D Zwanziger,Phys. Rev. D11, 3504 (1975)

    ADS  Google Scholar 

  14. D Zwanziger,Phys. Rev. D11, 3481 (1975)

    ADS  Google Scholar 

  15. G Morchio and F Strocchi,Nucl. Phys. B211, 471 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. D Buchholz,Nucl. Phys. B469, 333 (1996), hep-th/9511002

    Article  ADS  MathSciNet  Google Scholar 

  17. But not globally gauge invariant.

  18. P A M Dirac,Can. J. Phys. 33, 650 (1955)

    MATH  MathSciNet  Google Scholar 

  19. E d’Emilio and M Mintchev,Fortschr. Phys. 32, 473 (1984)

    MathSciNet  Google Scholar 

  20. E d’Emilio and M Mintchev,Fortschr. Phys. 32 503 (1984)

    MathSciNet  Google Scholar 

  21. O Steinmann,Ann. Phys. 157, 232 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. L V Prokhorov and S V Shabanov,Int. J. Mod. Phys. A7, 7815 (1992)

    ADS  Google Scholar 

  23. L V Prokhorov, D V Fursaev and S V Shabanov,Theor. Math. Phys. 97, 1355 (1993)

    Article  MathSciNet  Google Scholar 

  24. T Kawai and H P Stapp,Phys. Rev. D52, 2517 (1995), quant-ph/9502007

    ADS  Google Scholar 

  25. T Kawai and H P Stapp,Phys. Rev. D52, 2505 (1995).

    ADS  Google Scholar 

  26. T Kawai and H P Stapp,Phys. Rev. D52, 2484 (1995), quant-ph/9503002

    ADS  Google Scholar 

  27. L Lusanna and P Valtancoli,Int. J. Mod. Phys. A12, 4769 (1997), hep-th/9606078

    ADS  MathSciNet  Google Scholar 

  28. L Lusanna and P Valtancoli,Int. J. Mod. Phys. A12, 4797 (1997), hep-th/9606079

    ADS  MathSciNet  Google Scholar 

  29. T Kashiwa and N Tanimura,Phys. Rev. D56, 2281 (1997), hep-th/9612250

    ADS  Google Scholar 

  30. T Kashiwa and N Tanimura,Physical states and gauge independence of the energy momentum tensor in quantum electrodynamics, (1996), hep-th/9605207.

  31. G Chechelashvili, G Jorjadze, and N Kiknadze,Theor. Math. Phys. 109, 1316 (1997), hep-th/9510050

    Article  MathSciNet  Google Scholar 

  32. P Haagensen and K Johnson,On the wave functional for two heavy color sources in Yang-Mills theory, (1997), hep-th/9702204

  33. For details, see Sect. 7 of [5] and [30]

  34. K Cahill and D R Stump,Phys. Rev. D20, 540 (1979)

    ADS  Google Scholar 

  35. J Dollard,J. Math. Phys. 5, 729 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  36. A fuller account of this derivation of the asymptotic interaction will be presented in § 5 as part of a more general analysis that includes the case of massless matter

  37. N N Bogolyubov and D V Shirkov

  38. In non-abelian gauge theories the gauge field also needs to be dressed in order for it to carry

  39. M Lavelle and D McMullan,Phys. Lett. B371, 83 (1996), hep-ph/9509343

    ADS  Google Scholar 

  40. M Lavelle and D McMullan,Phys. Lett. B329, 68 (1994), hep-th/9403147

    ADS  Google Scholar 

  41. The non-abelian appearance of this gauge transformation in QED arises from the fact that the dressing is field dependent and thus might not commute with the potential

  42. E Bagan, M Lavelle, and D McMullan hep-th/9712080, to appear inPhys. Rev. D [RC] (1997)

  43. R Haag,Local quantum physics: fields, particles, algebras (Springer, Berlin, 1992)

    MATH  Google Scholar 

  44. H Georgi,Phys. Lett. B240, 447 (1990)

    ADS  Google Scholar 

  45. G Sterman,An introduction to quantum field theory (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  46. E Bagan, M Lavelle, and D McMullan,Phys. Rev. D56, 3732 (1997), hep-th/9602083

    ADS  Google Scholar 

  47. E Bagan, B Fiol, M Lavelle, and D McMullan,Mod. Phys. Lett. A12, 1815 (1997), hep-ph/9706515, Erratum-ibid, A12 (1997) 2317

    ADS  Google Scholar 

  48. T Muta,Foundations of quantum chromodynamics (World Scientific, Singapore, 1987)

    Google Scholar 

  49. The Feynman rule for the vertex with the source is here taken to be unity for simplicity, it could also be given the renormalisation group invariant form, m2ϕ*ϕ

  50. It is easy to check that the phase part of the dressing does not bring in any soft divergences

  51. Note that the massless tadpole diagrams of figure 5(b) do not cancel, but they, of course, do not alter the on-shell dependence of the IR-structure

  52. R Jackiw and L Soloviev,Phys. Rev. 27, 1485 (1968)

    Article  ADS  Google Scholar 

  53. Y L Dokshitser, V A Khoze, A H Mueller, and S I Troian,Basics of perturbative QCD (Ed. Frontieres, Gif-sur-Yvette, France, 1991)

    Google Scholar 

  54. R Doria, J Frenkel, and J C Taylor,Nucl. Phys. B168, 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  55. C Di’Lieto, S Gendron, I G Halliday and C T Sachrajda,Nucl. Phys. B183, 223 (1981)

    Article  ADS  Google Scholar 

  56. D Espriu and R Tarrach,Phys. Lett. B383, 482 (1996), hep-ph/9604431

    ADS  Google Scholar 

  57. F Havemann,Collinear divergences and asymptotic states, Zeuthen Report No. PHE-85-14, 1985 (unpublished), scanned at KEK

  58. M Nowakowski and A Pilaftsis,Z. Phys. C60, 121 (1993), hep-ph/9305321

    ADS  Google Scholar 

  59. G S Jones,Generalised functions, First ed. (McGraw-Hill, Berkshire, 1966)

    MATH  Google Scholar 

  60. R Jackiw, D Kabat and M Ortiz,Phys. Lett. B277, 148 (1992)

    ADS  MathSciNet  Google Scholar 

  61. I Robinson and D Rozga,J. Math. Phys. 25, 499 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  62. V N Gribov,Nucl. Phys. B139, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  63. I M Singer,Commun. Math. Phys. 60, 7 (1978)

    Article  MATH  ADS  Google Scholar 

  64. M Lavelle and D McMullan,Phys. Lett. B347, 89 (1995), hep-th/9412145

    ADS  Google Scholar 

  65. L Chen, M Belloni, and K Haller,Phys. Rev. D55, 2347 (1997), hep-ph/9609507

    ADS  MathSciNet  Google Scholar 

  66. V A Khoze and W Ochs,Int. J. Mod. Phys. A12, 2949 (1997), hep-ph/9701421

    ADS  Google Scholar 

  67. C Parrinello, S Petrarca, and A VladikasPhys. Lett. B268, 236 (1991)

    ADS  Google Scholar 

  68. P de Forcrand and J E Hetrick,Nucl. Phys. Proc. Suppl. 42, 861 (1995), hep-lat/9412044.

    Article  ADS  Google Scholar 

  69. R G Stuart,Unstable particles, (1995), hep-ph/9504308

  70. J Papavassiliou and A Pilaftsis,Phys, Rev. Lett. 75, 3060 (1995), hep-ph/9506417

    Article  ADS  Google Scholar 

  71. N Seiberg and E Witten,Nucl. Phys. B426, 19 (1994), hep-th/9407087

    Article  ADS  MathSciNet  Google Scholar 

  72. M Lavelle and D McMullan,Phys. Rev. Lett. 71, 3758 (1993), hep-th/9306132

    Article  ADS  Google Scholar 

  73. I Bialynicki-Birula and Z Bialynicka-Birula,Quantum electrodynamics (Pergamon Press, Oxford, 1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Horan.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02831497.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horan, R., Lavelle, M. & Mcmullan, D. Charges in gauge theories. Pramana - J Phys 51, 317–355 (1998). https://doi.org/10.1007/BF02828927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02828927

Keywords

PACS Nos

Navigation