Skip to main content
Log in

Pressure induced phase transformations and band structure of different high pressure phases in tellurium

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively.

Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raiph W G Wyckoff,Crystal Structures, (Interscience Publishers, New York, 1963) Second Edition, Volume 1, pp.36

    Google Scholar 

  2. W B Holzapfel,Rep. Prog. Phys. 59, 29 (1996) and also

    Article  ADS  Google Scholar 

  3. G Parthasarthy and W B Holzapfel,Phys. Rev. B37, 6499 (1988)

    Google Scholar 

  4. T Kruger and W B Holzapfel,Phys. Rev. Lett. 69, 305 (1992)

    Article  ADS  Google Scholar 

  5. Y Akahama, M Kobayashi and H Kawamura,Phys. Rev. B46, 6662 (1993)

    Google Scholar 

  6. Y Ohmasa, I Yamamoto, M Yao and H Endo,J. Phys. Soc. Japan,64, 4766 (1995) and the references therein.

    Article  ADS  Google Scholar 

  7. Y Akahama, M Kobayashi and H Kawamura,Phys. Rev. B47, 20 (1993)

    ADS  Google Scholar 

  8. Y Shimoi and H Fukutome,Prog. Theor. Phys. 87, 307 (1992)

    Article  ADS  Google Scholar 

  9. G Doerre and J D Joannopoulos,Phys Rev. Lett. 43, 1040 (1979)

    Article  ADS  Google Scholar 

  10. F Kirchhoff, N Binggeli and G Galli,Phys. Rev. B50, 9063 (1994)

    ADS  Google Scholar 

  11. R M Martin, G Lucovsky and K Helliwell,Phys. Rev. B13, 1363 (1976)

    ADS  Google Scholar 

  12. O K Anderson,Phys. Rev. B12, 3060 (1975)

    ADS  Google Scholar 

  13. H L Skriver,The LMTO method (Springer-Verlag), 1984

  14. OK Anderson and O Jepsen,Phys. Rev. Lett. 53, 2571 (1984)

    Article  ADS  Google Scholar 

  15. G K Kalpana, B Palanivel and M RajagopalanPhys. Rev. B50, 12316 (1994) and references therein (I B Shameem Banu, B Palanivel, G Kalpana, P Shenbagaraman and M Rajagopalan,Advances in high pressure science and technology, edited by M Yousuf, N Subramanian, K Govinda Rajan (University Press, Orient-Longman Limited, Hyderabad, 1997) page 302

    ADS  Google Scholar 

  16. A K Bandyopadhyay and L C Ming,Phys. Rev. B54, 12049 (1996)

    ADS  Google Scholar 

  17. P Ch Sahu, Mohammad Yousuf, N V Chandra Shekar, N Subramanian and K Govindarajan,Rev. Sei. Instrum. 66, 295 (1995)

    Google Scholar 

  18. K Aoki, O Shimomura, S Minomura, N Koshizuka and T Tsushgwa,J. Phys. Soc. Japan 48, 906 (1980)

    ADS  Google Scholar 

  19. W Kohn and L J Sham,Phys. Rev. 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. U von Barth and L Hedin,J. Phys. C5, 1629 (1972)

    ADS  Google Scholar 

  21. N E Christensen,Phys. Rev. B32, 207 (1985)

    ADS  Google Scholar 

  22. G Kalpana, B Palanivel and M Rajagopalan,Phys. Rev. B50, 12318 (1994)

    ADS  Google Scholar 

  23. D B Singh, A K Bandyopadhyay, M Rajagopalan, P Ch Sahu, M Yousuf and K Govindarajan,Solid State Commun. 109, 339 (1999)

    Article  ADS  Google Scholar 

  24. O Jepsen and O K Andersen,Solid State Commun. 9, 1763 (1971)

    Article  ADS  Google Scholar 

  25. M Rajagopalan,Advances in high pressure science and technology, edited by M Yousuf, N Subramanian, K Govinda Rajan (University Press, Orient-Longman Limited, Hyderabad, 1997) 264 and 330

    Google Scholar 

  26. R Keller, W B Holzapfel and H Schulz,Phys. Rev. B16, 4404 (1977)

    ADS  Google Scholar 

  27. K Aoki, O Shimomura and S Minomura,J. Phys. Soc. Japan 48, 551 (1980)

    Article  ADS  Google Scholar 

  28. R Jeanloz,Geophys. Res. Lett. 6, 1219 (1961)

    Google Scholar 

  29. D Xiong, L C Ming and M H Manghnani,Phys. Earth Planet. Int. 43, 244 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, A.K., Singh, D.B. Pressure induced phase transformations and band structure of different high pressure phases in tellurium. Pramana - J Phys 52, 303–319 (1999). https://doi.org/10.1007/BF02828893

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02828893

Keywords

PACS Nos

Navigation