Skip to main content
Log in

Autoimmunity, immunodeficiency and mucosal infections: Chronic intestinal inflammation as a sensitive indicator of immunoregulatory defects in response to normal luminal microflora

  • Immunology
  • 9th IWIDA International Workshop on Immunodeficient Animals Prague (Czech Republic) June 15–18, 1997
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Despite the fact that target antigens and the genetic basis of several autoimmune diseases are now better understood, the initial events leading to a loss of tolerance towards self-components remain unknown. One of the most attractive explanations for autoimmune phenomena involves various infections as possible natural events capable of initiating the process in genetically predisposed individuals. The most accepted explanation of how infection causes autoimmunity is based on the concept of “molecular mimicry” (similarity between the epitopes of an autoantigen and the epitopes in the environmental antigen). Infectious stimuli may also participate in the development of autoimmunity by inducing an increased expression of stress proteins (hsp), chaperones and transplantation antigens, which leads to abnormal processing and presentation of self antigens. Superantigens are considered to be one of the most effective bacterial components to induce inflammatory reactions and to take part in the development and course of autoimmune mechanisms. It has long been known that defects in the host defense mechanism render the individual susceptible to infections caused by certain microorganisms. Impaired exclusion of microbial antigens can lead to chronic immunological activation which can affect the tolerance to self components. Defects in certain components of the immune system are associated with a higher risk of a development of autoimmune disease. The use of animal models for the studies of human diseases with immunological pathogenesis has provided new insights into the influence of immunoregulatory factors and the lymphocyte subsets involved in the development of disease. One of the most striking conclusion arising from work with, genetically engineered immunodeficient mouse models is the existence of a high level of redundancy of the components of the immune system. However, when genes encoding molecules involved in T cell immunoregulatory functions are deleted, spontaneous chronic inflammation of the gut mucosa (similar to human inflammatory bowel disease) develops. Surprisingly, when such immunocompromised animals were placed into germfree environment, intestinal inflammation did not develop. Impairment of the mucosal immune response to the normal bacterial flora has been proposed to play a crucial role in the pathogenesis of chronic intestinal inflammation. The use of immunodeficient models colonized with defined microflora for the analysis of immune reactivity will shed light on the mode of action of different immunologically important molecules responsible for the delicate balance between luminal commensals, nonspecific and specific components of the mucosal immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ascher H., Hahn-Zoric M., Hanson L.A., Kilander A.F., Nilsson L.A., Tlaskalová H.: Value of serologic markers for clinical diagnosis and population studies of coeliac disease.Scand. J. Gastroenterol.31, 61–67 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Berg D.J., Davidson N., Kühn R. Müller W., Menon S., Holland G., Thompson-Snipes L., Leach M.W., Rennick D.: Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD+ TH1 like responses.J. Clin. Invest.98, 1010–1020 (1996).

    PubMed  CAS  Google Scholar 

  • Bouvet J.P., Pires R., Iscaki S., Pillot J.: Nonimmune macromolecular complex of Ig in human gut lumen: probable enhancement of antibody functions.J. Immunol.151, 2562–2571 (1993).

    PubMed  CAS  Google Scholar 

  • Gianani R., Sarvetnick N.: Viruses, cytokines, antigens and autoimmunity.Proc. Nat. Acad. Sci. USA93, 2257–2259 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Feighery C., O’Farrelly C. (Eds):Gastrointestinal Immunology and Gluten Sensitive Disease. Oak Tree Press; Dublin 1994.

    Google Scholar 

  • Funda D., Stenvang J.P., Buschard K.: Age-related changes in T cells of NOD mice.Immunol. Lett.45, 179–184 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Hänninen A., Salmi M., Simell O., Jalkanen S.: Mucosa-associated (β7-intergrinhigh) lymphocytes accumulate early in the pancreas of NOD mice and show aberrant recirculation behavior.Diabetes45, 1173–1180 (1996).

    Article  PubMed  Google Scholar 

  • Hoorfar J., Buschard K., Dagneas-Hansen F.: Prophylactic nutritional modification of the incidence of diabetes in autoimmune NOD mice.Brit. J. Nutr.69, 1–11 (1993).

    Article  Google Scholar 

  • Horak I.: Immunodeficiency in IL-2 knock out mice.Clin. Immunol. Immunopathol.76, S172-S173 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Ishigatsubo Y., Steinberg A.D., Krieg A., Klinman D.M.: Increased utilization of polyreactive B cells during periods of generalized immune activation.Autoimmunity22, 113–119 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Itescu S.: Rheumatic aspects of acquired immunodeficiency syndrome.Curr. Opin. Rheumatol.8, 346–353 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Karjalainen J., Martin J.M., Knip M., Ilonen J., Robinson B.H., Savilahti E., Akerblom H.K., Dosh M.M.: A bovine albumin peptide as a possible trigger of insulin dependent diabetes in BB rats.Autoimmunity2, 11–19 (1992).

    Google Scholar 

  • Karská K., Tučková L., Steiner L., Tlaskalová H., Michalak K.: Calreticulin—the potential autoantigen in coeliac disease.Biochem. Biophys. Res. Commun.209, 597–605 (1995).

    Article  PubMed  Google Scholar 

  • Kaufmann S.H.E.: Heat shock proteins and autoimmunity: a critical appraisal.Lancet343, 704–706 (1994).

    Article  Google Scholar 

  • Kotb M.: Infection and autoimmunity: a story of the host, the pathogen and the copathogen.Clin. Immunol. Immunopathol.74, 10–22 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kotzin B.L., Leung D.M., Kappler J., Marrack P.: Superantigens and their potential role in human diseases.Adv. Immunol.54, 99–121 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R.J., Lohler J., Rennick D., Rajewsky K., Muller W.: Interleukin-10 deficient mice develop chronic enterocolitis.Cell75, 263–274 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Liblau R.S., Bach J.F.: Selective IgA deficiency and autoimmunity.Internat. Arch. Allergy Immunol.99, 16–27 (1992).

    CAS  Google Scholar 

  • MacDonald T.T.: Breakdown of tolerance to the intestinal bacterial flora in inflammatory bowel disease (IBD).Clin. Exp. Immunol.102, 445–447 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts P., Miyoguchi E., Grusby M.J., Glimcher L.H., Bhan A.K., Tonegawa S.: Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice.Cell75, 274–282 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Morrissey P.J., Charrier K., Braddy S., Liggitt D., Watson J.D.: CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by contrasfer of purified CD4+ T cells.J. Exp. Med.178, 237–244 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Oldstone M.B.A.: Molecular mimicry and autoimmune disease.Cell50, 819–820 (1990).

    Article  Google Scholar 

  • Powrie F., Leach M.W., Mauze S., Caddle L.B., Coffman R.L.: Phenotypically distinct subsets of CD4+ T cell induce or protect from chronic intestinal inflammation in C.B-17 scid mice.Int. Immunol.5, 1461–1471 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Powrie F.: T cells in inflammatory bowel disease: protective and pathogenic roles.Immunity3, 171–174 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Rajewsky K.: A phenotype or not: targeting genes in the immune system.Science256, 483 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Rath H.C., Herfarth H.H., Sartor R.B.: Normal luminal bacteria, especially bacteriodes species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human β2 microglobulin transgenic rats.J. Clin. Invest.98, 945–953 (1996).

    PubMed  CAS  Google Scholar 

  • Rudolph U., Finegold M.J., Rich S.S., Harriman G.R., Srinivasan Y., Brabet P., Boulay G., Bradley A., Birnbauer L.: Ulcerative colitis and adenocarcinoma of the colon in G α-2 deficient mice.Nature Genet.10, 143–150 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Říhová B., Baudyš M., Tlaskalová H., Říhová H., Kim S.W.: Antibodies to gliadin detected after immunization with insulin and its G-derivatives.J. Clin. Lab. Immunol.44, 191–214 (1994).

    Google Scholar 

  • Sadlack B., Metz H., Schorle H., Schimpl A., Feller A.C., Horak I.: Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene.Cell75, 253–261 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Shroff K.E., Meslin K., Cebra J.J.: Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut.Infect. Immun.63, 3904–3913 (1995).

    PubMed  CAS  Google Scholar 

  • Shull M.M., Ormsby I., Kiewr A.B., Pawlowski S., Diebold R.J., Yin M., Allen R., Sidman C., Proetzel G., Calvin D., Annunziata N., Doetschman T.: Targeted disruption of the mouse transforming growth factor β-1 gene in multifocal inflammatory disease.Nature359, 693–699 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Sneller M.C., Lane H.C.: Infections in the immunocompromised host pp. 579–593 in R.R. Rich (Ed.):Clinical Immunology. Mosby, St. Louis (MI) 1996.

    Google Scholar 

  • Steinman L.: A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry.Proc. Nat. Acad. Sci. USA93, 2253–2256 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Steinman L.: Some misconceptions about understanding autoimmunity through experiments with knockouts.J. Exp. Med.185, 2039–2041 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Strober W., Ehrhardt R.O.: Chronic intestinal inflammation: an unexpected outcome in cytokine or T cell receptor mutant mice.Cell78, 203–295 (1993).

    Article  Google Scholar 

  • Štěpánková R., Tlaskalová-Hogenová H., Šinkora J., Jodl J., Frič P.: Changes of jejunal mucosa after long-term feeding of germfree rats with gluten.Scand. J. Gastroenterol.31, 551–557 (1996).

    Article  PubMed  Google Scholar 

  • Šterzl J.: Gnotobiological models and methods in immunology.Folia Microbiol.24, 58–69 (1979).

    Google Scholar 

  • Taurog J.D., Richardson J.T., Croft J.T., Simmons W.T., Zhou J.L., Suiero F., Balish E., Hammer R.E.: The germfree state prevents development of gut and joint inflammatory disease in HLAB27 transgenic rats.J. Exp. Med.180, 2359–2364 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Tlaskalová-Hogenová H.: Gnotobiology as a tool, pp. 1524–1527 in I. Lefkovits (Ed.):Manual of Immunological Methods. Academic Press, New York-London 1997.

    Google Scholar 

  • Tlaskalová-Hogenová H., Černá J., Mandel L.: Peroral immunization of germfree piglets: appearance of antibody-forming cells and antibodies of different isotypes.Scand. J. Immunol.13, 467–472 (1980).

    Article  Google Scholar 

  • Tlaskalová-Hogenová H., Farré-Castany M., Štěpánková R., Kozáková H., Tučková L., Funda D., Barot R., Cukrowska B., Šinkora J., Mandel L., Karská K., Kolínská J.: The gut as a lymphoepithelial organ: the role of intestinal epithelial cells in mucosal immunity.Folia Microbiol.40, 385–391 (1995a).

    Article  Google Scholar 

  • Tlaskalová-Hogenová H., Štěpánková R., Tučková L., Farré M., Větvička V., Trávníček J., Kolínská J., Kocna P., Frič P., Holub M., Zoric M., Nilsson L., Ascher H., Hanson L.: Autoimmune reactions induced by gliadin.Adv. Exp. Med. Biol.371, 1191–1198 (1995b).

    Google Scholar 

  • Tlaskalová H., Kamarýtová V., Mandel L., Prokešová L., Kruml J., Lanc A., Miler I.: The immune response of germ-free piglets after peroral monocontamination with livingEscherichia coli strain O86. I. The fate of antigen, dynamics and site of antibody formation, nature of antibodies and formation of heterohaemagglutinins.Folia Biol.16, 177–187 (1970).

    Google Scholar 

  • Tlaskalová-Hogenová H., Šterzl J., Štěpánková R., Dlabač V., Větvička V., Rossmann P., Mandel L., Rejnek J.: Development of immunological capacity under germfree and conventional conditions.Ann. N.Y. Acad. Sci.409, 96–113 (1983).

    Article  PubMed  Google Scholar 

  • Tlaskalová-Hogenová H., Štěpánková R.: Development of antibody formation in germ-free and conventionally reared rabbits: the role of intestinal lymphoid tissue in antibody formation toE. coli antigens.Folia Biol.26, 81–93 (1980).

    Google Scholar 

  • Toivanen P., Toivanen A., Brines R.: When is an autoimmune disease not an autoimmune disease.Immunol. Today15, 556–559 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Tučková L., Tlaskalová-Hogenová H., Farré M.A., Karská K., Rossmann P., Kolínská J., Kocna P.: Molecular mimicry as a possible cause of autoimmune reactions in celiac disease? Antibodies to gliadin cross-react with epitopes on enterocytes.Clin. Immun. Immunopath.74, 170–176 (1995).

    Article  PubMed  Google Scholar 

  • Vanderlugt C.J., Miller S.D.: Epitope spreading.Curr. Opin. Immunol.8, 831–836 (1996).

    Article  PubMed  CAS  Google Scholar 

  • de Vries R.R.S., Cohen I.R., Van Rood J.J. (Eds.):The Role of Micro-organisms in Non-infectious Diseases. Springer-Verlag, London 1990.

    Google Scholar 

  • van der Waaij D., Heidt P.J.: Colonization resistance expressed in mean number of biotypes per faecal sample in mice: its relevance to the development of autoimmune disease.Microecol. Ther.20, 249–256 (1990).

    Google Scholar 

  • Wucherpfennig K.W., Strominger J.L.: Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein.Cell80, 695–705 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Zouali M.: B cell superantigens: implications for selection of the human antibody repertoire.Immunol. Today16, 399–402 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tlaskalová-Hogenová, H., Štěpánková, R., Tučková, L. et al. Autoimmunity, immunodeficiency and mucosal infections: Chronic intestinal inflammation as a sensitive indicator of immunoregulatory defects in response to normal luminal microflora. Folia Microbiol 43, 545–550 (1998). https://doi.org/10.1007/BF02820817

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820817

Keywords

Navigation