Skip to main content
Log in

Colicins—Exocellular lethal proteins ofEscherichia coli

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Colicins are toxic exoproteins produced by bacteria of colicinogenic strains ofEscherichia coli and some related species ofEnterobacteriaceae, during the growth of their cultures. They inhibit sensitive bacteria of the same family. About 35%E. coli strains appearing in human intestinal tract are colicinogenic. Synthesis of colicins is coded by genes located on Col plasmids. Until now more than 34 types of colicins have been described, 21 of them in greater detail,viz. colicins A, B, D, E1–E9, Ia, Ib, JS, K, M, N, U, 5, 10. In general, their interaction with sensitive bacteria includes three steps: (1) binding of the colicin molecule to a specific receptor in the bacterial outer membrane; (2) its translocation through the cell envelope; and (3) its lethal interaction with the specific molecular target in the cell. The classification of colicins is based on differences in the molecular events of these three steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott J.D., Graham J.M.: Colicine typing ofShigella sonnei.Month. Bull. Minist. Health Lab. Serv.20, 51–58 (1961).

    CAS  Google Scholar 

  • Abbott J.D., Shannon R.: A new method for typingShigella sonnei using colicin production as a marker.J. Clin. Path.11, 71–77 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Akutsu A., Masaki H., Ohta T.: Molecular structure and immunity specifity of colicin E6, an evolutionary intermediate between E-group colicins and cloacin DF13.J. Bacteriol.171, 6430–6436 (1989).

    PubMed  CAS  Google Scholar 

  • Baquero F., Bouanchaud D., Martínez M.C., Perrández C.: Microcin plasmids: a group of extrachromosomal elements coding for low molecular weight antibiotics inEscherichia coli.J. Bacteriol.135, 342–347 (1978).

    PubMed  CAS  Google Scholar 

  • Baquero F., Moreno F.: The microcins.FEMS Microbiol. Lett.23, 117–124 (1984).

    Article  CAS  Google Scholar 

  • Baty D., Frenette M., Lloubès R., Géli V., Howard S.P., Pattus F., Lazdunski C.: Functional domains of colicin A.Mol. Microbiol.2, 807–811 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Baty D., Lloubès R., Géli V., Lazdunski C., Howard S.P.: Extracellular release of colicin A is non-specific.EMBO J.6, 2463–2468 (1987).

    PubMed  CAS  Google Scholar 

  • Bénédetti H., Lloubès R., Lazdunski C., Lettelier L.: Colicin A unfolds during its translocation inEscherichia coli cells and spans the whole cell envelope when its pore has formed.EMBO J.11, 441–447 (1992).

    PubMed  Google Scholar 

  • Ben-Gurion R., Hertman I.: Bacteriocin-like material produced byPasteurella pèstis.J. Gen. Microbiol.19, 289–294 (1958).

    PubMed  CAS  Google Scholar 

  • Bourdineaud J.P., Boulanger P., Lazdunski C., Letellier L.:In vivo properties of colicin A: channel activity is voltage dependent but translocation may be voltage independent.Proc. Nat. Acad. Sci. USA87, 1037–1041 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Bouveret E., Derouiche R., Rigal A., Lloubès R., Lazdunski C., Bénédetti H.: Peptidoglycan-associated lipoprotein-TolB interaction.J. Biol. Chem.270, 11071–11077 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bradley D.E.: Colicins G and H and their host strains.Can. J. Microbiol.37, 751–757 (1991).

    PubMed  CAS  Google Scholar 

  • Bradley D.E., Howard S.P.: A new colicin that adsorbs to the outer membrane protein Tsx but is dependent on thetonB instead of thetolQ membrane transport system.J. Gen. Microbiol.138, 2721–2724 (1992).

    PubMed  CAS  Google Scholar 

  • Brandis H., Šmarda J.:Bacteriocine und bacteriocinähnliche Substanzen. Gustav Fischer Verlag, Jena 1971.

    Google Scholar 

  • Braun V.: Covalent lipoprotein from the outer membrane ofEscherichia coli.Biochim. Biophys. Acta415, 335–377 (1975).

    PubMed  CAS  Google Scholar 

  • Braun V.: Energy-coupled transport and signal transduction through the gram-negative outer membranevia the TonB-ExbB-ExbD dependent receptor proteins.FEMS Microbiol. Rev.16, 295–307 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Braun V., Günter K., Hantke K.: Transport of iron across the outer membrane.Biol. Met.4, 14–22 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Braun V., Pilsl H., Gross P.: Colicins: structures, modes of action, transfer through membranes, and evolution.Arch. Microbiol.161, 199–206 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Cavard D., Lazdunski C.: Colicin cleavage by OmpT protease during both entry into and release fromEscherichia coli cells.J. Bacteriol.172, 648–652 (1990).

    PubMed  CAS  Google Scholar 

  • Cavard D., Lloubès R., Morlon J., Chartier M., Lazdunski C.: Lysis protein encoded by plasmid ColA-CA31. Gene sequence and export.Mol. Gen. Genet.199, 95–100 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Chak K.F., Kuo W.S., Lu F.M., James R.: Cloning and characterization of the ColE7 plasmid.J. Gen. Microbiol.137, 91–100 (1991).

    PubMed  CAS  Google Scholar 

  • Chak K.F., Safo M.K., Ku W.Y., Hsieh S.Y., Yuan H.S.: The crystal structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface.Proc. Nat. Acad. Sci. USA93, 6437–6442 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Chan P.T., Ohmori H., Tomizawa J., Lebowitz J.: Nucleotide sequence and gene organization of ColE1 DNA.J. Biol. Chem.260, 8925–8935 (1985).

    PubMed  CAS  Google Scholar 

  • Clowes R.C.: Colicin factors and episomes.Genet. Res. Cambr.4, 162–165 (1963).

    Google Scholar 

  • Clowes R.C.: Transmission and elimination of colicin factors and some aspects of immunity to colicin E1 inEscherichia coli.Zbl. Bakt. Hyg. A I Orig.196, 152–160 (1965).

    Google Scholar 

  • Cole S.T., Saint-Joanis B., Pugsley A.P.: Molecular characterization of the colicin E2 operon and identification of its proteins.Mol Gen. Genet.198, 465–472 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Cooper P.C., James R.: Two new E colicins, E8 and E9, produced by a strain ofEscherichia coli.J. Gen. Microbiol.130, 209–215 (1984).

    PubMed  CAS  Google Scholar 

  • Davies J.K., Reeves P.: Genetics of resistance to colicins inEscherichia coli K-12: cross-resistance among colicins of group B.J. Bacteriol.123, 96–101 (1975a).

    PubMed  CAS  Google Scholar 

  • Davies J.K., Reeves P.: Genetics of resistance to colicins inEscherichia coli K-12: cross-resistance among colinins of group A.J. Bacteriol.123, 102–117 (1975b).

    PubMed  CAS  Google Scholar 

  • Di Masi D.R., White J.S., Schnaitman C.A., Bradbeer C.: Transport of vitamin B12 inEscherichia coli: common receptor sites for vitamin B12 and E colicins on outer membrane of the cell envelope.J. Bacteriol.115, 506–513 (1973).

    PubMed  Google Scholar 

  • Drury L.S., Buxton R.S.: Identification and sequencing of theEscherichia coli cet gene which codes for an inner membrane protein, mutation of which causes tolerance to colicin E2.Mol. Microbiol.2, 109–119 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Duché D., Izard J., Gonzáles-Mañas J.M., Parker M.W., Crest M., Chartier M., Baty D.: Membrane topology of the colicin A pore-forming domain analyzed by disulfide bond engineering.J. Biol. Chem.271, 15401–15406 (1996).

    Article  PubMed  Google Scholar 

  • Duché D., Letellier L., Géli V., Bénédetti H., Baty D.: Quantification of group A colicin import sites.J. Bacteriol.177, 4935–4939 (1995).

    PubMed  Google Scholar 

  • El Kouhen R., Hoenger A., Engel A., Pages J.:In vitro approaches to investigation of the early steps of colicin-OmpF interaction.Eur. J. Biochem224, 723–728 (1994).

    Article  PubMed  Google Scholar 

  • van den Elzen P.J.M., Walters H.H.B., Veltkamp E., Nukamp H.J.: Molecular structure and function of the bacteriocin gene and bacteriocin protein of plasmid cloDF13.Nucl. Acids. Res.11, 2465–2477 (1983).

    Article  PubMed  Google Scholar 

  • Eraso J.M., Chidambaram M., Weinstock G.M.: Increased production of colicin E1 in stationary phase.J. Bacteriol.178, 1928–1935 (1996).

    PubMed  CAS  Google Scholar 

  • Eraso J.M., Weinstock G.M.: Anaerobic control of colicin E1 production.J. Bacteriol.174, 5101–5109 (1992).

    PubMed  CAS  Google Scholar 

  • Espesset D., Duché D., Baty D., Géli V.: The channel domain of colicin A is inhibited by its immunity protein through direct interaction in theEscherichia coli inner membrane.EMBO J.15, 2356–2364 (1996).

    PubMed  CAS  Google Scholar 

  • Evans L.J.A., Cooper A., Lakey J.H.: Direct measurement of the association of a protein with a family of membrane receptors.J. Mol. Biol.255, 559–563 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ferber D.M., Brubaker R.R.: Mode of action of pesticin: N-acetylglucosaminidase activity.J. Bacteriol.139, 495–501 (1979).

    PubMed  CAS  Google Scholar 

  • Ferber D.M., Fowler J.M., Brubaker R.R.: Mutations to tolerance and resistance to pesticin and colicins inEscherichia coli.J. Bacteriol.146, 506–511 (1981).

    PubMed  CAS  Google Scholar 

  • Foulds J., Shemin D.: Properties and characteristics of a bacteriocin fromSerratia marcescens.J. Bacteriol.99, 655–660 (1969).

    PubMed  CAS  Google Scholar 

  • Fredericq P.: Sur la pluralité des récepteurs d'antibiose d'E. coli.Compt. Rend. Soc. Biol.140, 1189–1190 (1946).

    Google Scholar 

  • Fredericq P.: Actions antibiotiques réciproques chez lesEnterobacteriaceae.Rev. belge Path. exp. Med. exp.19, suppl. 4, 1–107 (1948).

    Google Scholar 

  • Fredericq P.: Acquisition de proprietes antibiotiques nouvelles par la soucheE. coli V sous l'action des bacteriophages T.1, T.5 et T.7.Antonie van Leeuwenhoek J. Microbiol. Serol.17, 102–106 (1951).

    Article  CAS  Google Scholar 

  • Fredericq P.: A note on the classifications of colicins.Zbl. Bakt. Hyg. A I Orig.196, 140–142 (1965).

    Google Scholar 

  • Fredericq P., Betz-Bareau M.: Transfert génétique de la propriété colicinogène chezE. coli.Compt. Rend. Soc. Biol.147, 1110–1112 (1953).

    CAS  Google Scholar 

  • Fredericq P., Joiris E., Betz-Bareau M., Gratia A.: Recherche des germes producteurs de colicines dans les selles de malades atteints de fièvre paratyphoide B.Compt. Rend. Soc. Biol.143, 556–559 (1949).

    Google Scholar 

  • Fredericq P., Šmarda J.: Complexite du facteur colicinogène B.Ann. Inst. Pasteur118, 767–774 (1970).

    CAS  Google Scholar 

  • Gardner J.F.: Some antibiotics formed byBacterium coli.Brit. J. exp. Path.31, 102–111 (1950).

    PubMed  CAS  Google Scholar 

  • Géli V., Lazdunski C.: An α-helical hydrophobic hairpin as a specific determinant in protein-protein interaction occurring inEscherichia coli colicin A and B immunity systems.J. Bacteriol.174, 6432–6437 (1992).

    PubMed  Google Scholar 

  • Gratia A.: Sur un remarquable exemple d'anatagonisme entre deux souches de colibacille.Comp. Rend. Soc. Biol.93, 1040–1041 (1925).

    Google Scholar 

  • Gratia A.: Antagonisme bactérien et bactériophagie.Ann. Inst. Pasteur48, 113–137 (1932).

    Google Scholar 

  • Gratia A., Fredericq P.: Diversité des souches antibiotiques deB. coli et étendue variable de leurs champs d'action.Comp. Rend. Soc. Biol.140, 1032–1033 (1946).

    CAS  Google Scholar 

  • Gross P., Braun V.: Colicin M is inactivated during import by its immunity protein.Mol. Gen. Genet.251, 388–396 (1996).

    PubMed  CAS  Google Scholar 

  • Guasch J.F., Enfedaque E., Ferrer S., Gargallo D., Regué M.: Bacteriocin 28b, a chromosomally encoded bacteriocin produced by mostSerratia marcescens biotypes.Res. Microbiol.146, 447–483 (1995).

    Article  Google Scholar 

  • Guihard G., Boulanger P., Bénédetti H., Lloubès R., Besnard M., Lettelier L.: Colicin A and the Tol proteins involved in its translocation are preferentially located in the contact sites between the inner and outer membranes ofEscherichia coli cells.J. Biol. Chem.269, 5874–5880 (1994).

    PubMed  CAS  Google Scholar 

  • Hamon Y., Péron Y.: A propos de quelques nouveaux types de colicines thermostables.Compt. Rend. Acad. Sci.258, 3121–3124 (1964a).

    CAS  Google Scholar 

  • Hamon Y., Péron Y.: Description de sept nouveaux types de colicines. État actuel de la classification de ces antibiotiques.Ann. Inst. Pasteur106, 44–54 (1964b).

    Google Scholar 

  • Hantke K., Braun V.: Membrane receptor dependent iron transport inEscherichia coli.FEBS Lett.49, 301–305 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Hauduroy P., Papavassiliou J.: Identification of a new type of colicine (colicine L).Nature195, 730–732 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Hejátko J., Šmarda J.: Temporary desorption of colicin during the process of its adsorption on sensitive bacteria.Scripta med. (Brmo), in press (1998).

  • Hill C., Holland I.B.: Genetic basis of colicin E susceptibility inEscherichia coli. I. Isolation and properties of refractory mutants and the preliminary mapping of their mutations.J. Bacteriol.94, 677–686 (1967).

    PubMed  CAS  Google Scholar 

  • Hirose A., Kumagai J., Ihamori K.: Dissociation and reconstitution of colicin E3 and immunity substance complex.J. Biochem. (Tokyo)79, 305–311 (1976).

    CAS  Google Scholar 

  • Horák V.: Two new colicins fromShigellae.Fol. Microbiol.35, 469–470 (1990).

    Google Scholar 

  • Horák V.: Seventy colicin types ofShigella sonnei and an indicator system for their determination.Zbl. Bakt. Hyg. A I Orig.281, 24–29 (1994).

    Google Scholar 

  • Horák V., Sobotková J.: Sensitivity to colicin JS, one of important characteristics ofEscherichia coli strains belonging to enteroinvasive serovars.Zbl. Bakt. Hyg. A I Orig.269, 156–159 (1988).

    Google Scholar 

  • Jacob F., Siminovitch L., Wollman É.: Sur la biosynthèse d'une colicine et sur son mode d'action.Ann. Inst. Pasteur83, 295–315 (1952).

    CAS  Google Scholar 

  • Jakes K.S., Davis N.G., Zinder N.D.: A hybrid toxin from bacteriophage f1 attachment protein and colicin E3 has altered cell receptor specifity.J. Bacteriol.170, 4231–4238 (1988).

    PubMed  CAS  Google Scholar 

  • Jakes K.S., Zinder N.: Highly purified colicin E3 contains immunity protein.Proc. Nat. Acad. Sci. USA71, 3380–3384 (1974).

    Article  PubMed  CAS  Google Scholar 

  • James R., Jarvis M., Barker D.F.: Nucleotide sequence of the immunity and lysis region of the ColE9-J plasmid.J. Gen. Microbiol.133, 1553–1562 (1987).

    PubMed  CAS  Google Scholar 

  • James R., Kleanthous C., Moore G.R.: The biology of E-colicins: paradigms and paradoxes.Microbiol.142, 1569–1580 (1996).

    CAS  Google Scholar 

  • Jeanteur D., Schirmer T., Fourel D., Simonet V., Rummel G., Widmer C., Rosenbusch J.P., Pattus F., Pages J.: Structural and functional altertions of a colicin-resistant mutant of OmpF-porin fromEscherichia coli Proc. Nat. Acad. Sci. USA91, 10675–10679 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Kadner R.J.: Vitamin B12 transport inEscherichia coli: energy coupling between membranes.Mol. Microbiol.4, 2027–2033 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Kadner R.J., Bassford P.J. Jr.,Pugsley A.P.: Colicin receptors and mechanisms of colicin uptake.Zbl. Bakt. Hyg. A I Orig.244 90–104 (1979).

    CAS  Google Scholar 

  • Kageyama M., Kobayashi M., Sano Y., Masaki H.: Construction and characterization of pyocin-colicin chimeric proteins.J. Bacteriol.178, 103–110 (1996).

    PubMed  CAS  Google Scholar 

  • Konisky J.: The Bacteriocins, pp. 71–136 inThe Bacteria: a Treatise on Structure and Function, Vol. 6Bacterial Diversity (L.N. Ornston, J.R. Sokatch, Eds.) Academic Press, New York 1978.

    Google Scholar 

  • Konisky J., Nomura M.: Interaction of colicins with bacterial cells. II. Specific alteration ofEscherichia coli ribosomes induced by colicin E3in vivo.J. Mol. Biol.26, 181–195 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Konisky J., Richards F.M.: Characterization of colicin Ia and Ib. Purification and some physical properties.J. Biol. Chem.245, 2972–2978 (1970).

    PubMed  CAS  Google Scholar 

  • Lasater L.S., Cann P.A., Glitz D.G.: Localization of the site of cleavage of ribosomal RNA by colicin E3. Placement of the small ribosomal subunit by electron microscopy of antibody-complementary oligodeoxynucleotide complexes.J. Biol. Chem.264, 21798–21805 (1989).

    PubMed  CAS  Google Scholar 

  • Lau P.C.K., Condie J.A.: Nucleotide sequences from the colicins E6 and E9 operons: presence of a degenerate transposon-like structure in the ColE9-J plasmid.Mol. Gen. Genet.217, 269–277 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Lazdunski C.: Colicin import and pore-formation: a system for studying protein transport across membranes?Mol. Microbiol.16, 1059–1066 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Lazdunski C., Baty D., Géli V., Cavard D., Morlon J., Lloubès J., Howard S.P., Knibiehler M., Chartier M., Varenne S., Frenette M., Dasseux J.L. Pattus F.: The membrane channel-forming colicin A: synthesis, secretion, structure, action and immunity.Biochim. Biophys. Acta947, 4445–4464 (1988).

    Google Scholar 

  • Lazzaroni J.C., Vianney A., Popot J.L., Bénédetti H., Samatey F., Lazdunski C., Portalier R., Géli V.: Transmembrane α-helix interactions are required for the functional assembly of theEscherichia coli Tol complex.J. Mol. Biol.246, 1–7 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Lokaj J., Šmarda J., Mach J.: Colicin E3 enhances the oxidoreductive activity of guinea-pig leukocytes.Experientia38, 1352–1353 (1982).

    Article  CAS  Google Scholar 

  • Lotz W.: Effect of guanosine tetraphosphate onin vitro protein synthesis directed by E1 and E3 colicinogenic factors.J. Bacteriol.135, 707–712 (1978).

    PubMed  CAS  Google Scholar 

  • Lu F.M., Chak K.F.: Two overlapping SOS boxes in ColE1 operon are responsible for the viability of cells harboring the Col plasmid.Mol. Gen. Genet.251, 407–411 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Luirink J., Mol O., Oudega B.: Functioning of the pColDF13 encoded BRP, pp. 307–316 inBacteriocins, Microcins and Lantibiotics (R. James, C. Lazdunski, F. Pattus, Eds). Springer-Verlag, Berlin-Heidelberg-New York 1992.

    Google Scholar 

  • Males B.M., Stocker B.A.D.:Escherichia coli K317, formerly used to define colicin group E2, produces colicin E7, is immune to colicin E2, and carries a bacteriophage-restricting conjugative plasmid.J. Bacteriol.144, 524–531 (1980).

    PubMed  CAS  Google Scholar 

  • Males B.M., Stocker B.A.D.: Colicin E4, colicin E5, colicin E6 and colicin A and properties ofbtub+ colicinogenic transconjugants.J. Gen. Microbiol.128, 95–106 (1982).

    PubMed  CAS  Google Scholar 

  • Mathildah M.T., Timmis K.N., Diaz E.: Use of colicin E3 for biological containment of microorganisms.Appl. Environ. Microbiol.62, 1805–1807 (1996).

    Google Scholar 

  • Matsuzawa H., Ushiyama S., Koyama Y., Ohta T.:Escherichia coli K-12tolZ mutants tolerant to colicins E2, E3, D, Ia and Ib: defect in generation of the electrochemical proton gradient.J. Bacteriol.160, 733–739 (1984).

    PubMed  CAS  Google Scholar 

  • Mock M., Pugsley A.P.: The BtuB group Col plasmids and homology between the colicins they encode.J. Bacteriol.150, 1069–1076 (1982).

    PubMed  CAS  Google Scholar 

  • Morlon J., Lloubès R., Varenne S., Chartier M., Lazdunski C.: Complex nucleotide sequence of the structural gene for the colicin A, a gene translated at a non-uniform rate.J. Mol. Biol.170, 271–285 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Nagel de Zwaig R., Luria S.E.: Genetics and physiology of colicin-tolerant mutants ofEscherichia coli.J. Bacteriol.94, 1112–1123 (1967).

    PubMed  CAS  Google Scholar 

  • Nomura M.: Mode of action of colicins.Cold Spring Harbor Symp. Quant. Biol.28, 315–324 (1963).

    CAS  Google Scholar 

  • Nomura M.: Mechanism of action of colicines.Proc. Nat. Acad. Sci. USA52, 1514–1521 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Nomura M., Nakamura M.: Reversibility of inhibition of nucleic acids and protein synthesis by colicin K.Biochem. Biophys. Res. Comm.7, 306–309 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Nomura M., Witten C.: Interaction of colicins with bacterial cells. III. Colicin-tolerant mutations inEscherichia coli.J. Bacteriol.94, 1093–1111 (1967).

    PubMed  CAS  Google Scholar 

  • Ölschläger T., Braun V.: Sequence, expression and localization of the immunity protein for colicin M.J. Bacteriol.169, 4765–4769 (1987).

    PubMed  Google Scholar 

  • Ölschläger T., Turba A., Braun V.: Binding of the immunity protein inactivates colicin M.Mol. Microbiol.5, 1105–1111 (1991).

    Article  PubMed  Google Scholar 

  • Papavassiliou J.: Biological characteristics of colicine X.Nature160, 110 (1961).

    Article  Google Scholar 

  • Parker M.W., Pattus F., Tucker A.D., Tsernoglou D.: Structure of the membrane-pore-forming fragment of colicin A.Nature337, 93–96 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Pattus F., Massote D., Wilmsen H.U., Lakey J., Tsernoglou D., Tucker A., Parker M.W.: Colicins: prokaryotic killer pores.Experientia46, 181–191 (1990).

    Google Scholar 

  • Pilsl H., Braun V.: Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptakevia the Tsx receptor and to pore formation.Mol. Microbiol.16, 57–67 (1995a).

    Article  PubMed  CAS  Google Scholar 

  • Pilsl H., Braun V.: Evidence that the immunity protein inactivates colicin 5 immediately prior formation of the transmembrane channel.J. Bacteriol.177, 6966–6972 (1995b).

    PubMed  CAS  Google Scholar 

  • Pilsl H., Braun V.: Strong function-related homology between the pore-forming colicins K and 5.J. Bacteriol.177, 6973–6977 (1995c).

    PubMed  CAS  Google Scholar 

  • Pilsl H., Killmann H., Hantke K., Braun V.: Periplasmic location of the pesticin immunity protein suggest inactivation of pesticin in the periplasm.J. Bacteriol.178, 2431–2435 (1996).

    PubMed  CAS  Google Scholar 

  • Pugsley A.P.: The ins and outs of colicins. I. Production, and translocation across membranes.Microbiol. Sci.1, 168–175 (1984a).

    PubMed  CAS  Google Scholar 

  • Pugsley A.P.: The ins and outs of colicins. II. Lethal action, immunity and ecological implications.Microbiol. Sci.1, 203–205 (1984b).

    PubMed  CAS  Google Scholar 

  • Pugsley A.P.: Nucleotide sequencing of the structural gene for colicin N reveals homology between the catalytic C-terminal domains of colicin A and colicin N.Mol. Microbiol.1, 317–325 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Pugsley A.P.: The immunity and lysis genes of ColN plasmid pCHAP4.Mol. Gen. Genet.211, 335–341 (1988).

    Article  PubMed  Google Scholar 

  • Pugsley A.P., Schwartz M.: A genetic approach to the study of mitomycin-induced lysis ofEscherichia coli K-12 strains which produce colicin E2.Mol. Gen. Genet.190, 366–372 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Pugsley A.P., Schwartz M.: Colicin E2 release: lysis, leakage or secretion? Possible role of a phospholipase.EMBO J.3, 2393–2397 (1984).

    PubMed  CAS  Google Scholar 

  • Qui X.Q., Jakes K.S., Kienker P.K., Finkelstein A., Slatin S.L.: Major transmembrane movement associated with colicin Ia channel gating.J. Gen. Physiol.107, 313–328 (1996).

    Article  Google Scholar 

  • Reeves P.: The bacteriocins.Bacteriol. Rev.29, 24–45 (1965).

    PubMed  CAS  Google Scholar 

  • Reeves P.:The Bacteriocins. Springer-Verlag, Berlin-Heidelberg-New York 1972.

    Google Scholar 

  • Roos U., Harkness R.E., Braun V.: Assembly of colicin genes from a few DNA fragments. Nucleotide sequence of colicin D.Mol. Microbiol.3, 891–902 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Sagik J.F., Suit J.L., Luria S.E.:cea-kil operon of the ColE1 plasmid.J. Bacteriol.153, 1479–1485 (1983).

    Google Scholar 

  • Salles B., Weisemann J.M., Weinstock G.M.: Temporal control of colicin E1 induction.J. Bacteriol.169, 5028–5034 (1987).

    PubMed  CAS  Google Scholar 

  • San Millán J.L., Kolter R., Moreno F.: Evidence that colicin X is microcin B17.J. Bacteriol.169, 2899–2901 (1987).

    PubMed  Google Scholar 

  • Schaller K., Holtje J.-V., Braun V.: Colicin M is an inhibitor of murein synthesis.J. Bacteriol.152, 994–1000 (1982).

    PubMed  CAS  Google Scholar 

  • Schaller K., Krauel A., Braun V.: Temperature sensitive, colicin M-tolerant mutant ofEscherichia coli.J. Bacteriol.147, 135–139 (1981).

    PubMed  CAS  Google Scholar 

  • Schramm E., Mende J., Braun V., Kamp R.M.: Nucleotide sequence of colicin B activity genecba: consensus peptapeptide among TonB-dependent colicins and receptors.J. Bacteriol.169, 3350–3357 (1987).

    PubMed  CAS  Google Scholar 

  • Šmajs D.: The morphology of bacterial cell in inhibition zones produced by colicins.Scripta med. (Brno)68, 171–180 (1995).

    Google Scholar 

  • Šmajs D., Pisl, H., Braun V.: Colicin U, a novel colicin produced byShigella boydii.J. Bacteriol.179, 4919–4928 (1997).

    PubMed  Google Scholar 

  • Šmarda J.: Incidence and manifestations of colicinogeny in strains ofEscherichia coli.J. Hyg. Epid. Microbiol. Immunol.4, 151–165 (1960).

    Google Scholar 

  • Šmarda J.: Some problems of the immediate action of colicines on susceptible bacteria.Antimicrob. Agents Chemother. 345–348 (1965).

  • Šmarda J.: Novel approaches to the mode of action of colicins.Fol. Microbiol.20, 264–271 (1975).

    Google Scholar 

  • Šmarda J.: The action of colicins on eukaryotic cells.J. Toxicol. Toxin Rev.2, 1–76 (1983).

    Google Scholar 

  • Šmarda J.: Production of bacteriocin-like agents ofBudvicia aquatica and “Pragia fontium”.Zbl. Bakt. Hyg. A I Orig.265, 74–81 (1987).

    Google Scholar 

  • Šmarda J.: Resistance and tolerance of bacteria to E colicins, pp. 493–502 inBacteriocins, Microcins and Lantibiotics (R. James, C. Lazdunski, F. Pattus, Eds). Springer-Verlag, Berlin-Heidelberg-New York 1992a.

    Google Scholar 

  • Šmarda J.: Colicins as anti-tumour drugs, pp. 505–510 inBacteriocins, Microcins and Lantibiotics (R. James, C. Lazdunski, F. Pattus, Eds). Springer-Verlag, Berlin-Heidelberg-New York 1992b.

    Google Scholar 

  • Šmarda J., Damborský J.: A quantitative assay of E group colicins.Scripta med. (Brno)64, 111–118 (1991).

    Google Scholar 

  • Šmarda J., Obdržálek V.: Colicine Q.Zbl. Bakt. Hyg. A I Orig.200, 493–497 (1966).

    Google Scholar 

  • Šmarda J., Obdržálek V.: The lethal effect of colicin E3 on HeLa cells in tissue cultures.IRCS J. Med. Sci.5, 524 (1977).

    Google Scholar 

  • Šmarda J., Obdržálek V., Táborský I., Mach J.: The cytotoxic effect of colicin E3 on mammalian tissue cells.Fol. Microbiol.23, 272–277 (1978).

    Google Scholar 

  • Šmarda J., Oravec C.:In vitro andin vivo inhibition of blast lymphocytes by colicins.Fol. Microbiol.38, 120 (1993).

    Google Scholar 

  • Šmarda J., Petrželová J., Vyskot B.: Colicin JS ofShigella sonneii: classification of type colicin “7”.Zbl. Bakt. Hyg. A I Orig.263, 530–540 (1987).

    Google Scholar 

  • Šmarda J., Schuhmann E.: Studies of colicin action on wall-less stable L-forms ofEscherichia coli. I. Degree of attachment and of killing effect on rods and stable L-form cells.Z. Allg. Mikrobiol.19, 511–516 (1979).

    Article  PubMed  Google Scholar 

  • Šmarda J., Ševčíková I.: Mutation analysis of the receptor for colicins E1–E7. A pilot study.Fol. Microbiol.33, 59–67 (1988).

    Article  Google Scholar 

  • Šmarda J., Šmarda J., Jr.,Vrbická Z.: Colicins E7 and E8 degrade DNA in sensitive bacteria.Fol. Microbiol.35, 348–352 (1990).

    Google Scholar 

  • Šmarda J., Taubeneck U.: Situation of colicin receptors in surface layers of bacterial cells.J. Gen. Microbiol.52, 161–172 (1968).

    Google Scholar 

  • Song H.Y., Cramer W.A.: Membrane topography of ColE1 gene products: the immunity protein.J. Bacteriol.173, 2935–2943 (1991).

    PubMed  CAS  Google Scholar 

  • Sonnenborn U., Greinwald R.:Beziehungen zwischen Wirtorganismus und Darmflora. Schattauer, Stuttgart-New York 1991.

    Google Scholar 

  • Stegehius F., van der Wal F.J., Luirink J., Oudega B.: Expression of the pColDF13 encoded bacteriocin release protein or its stable signal peptide causes early effects on protein biosynthesis and Mg2+ transport.Antonie van Leeuwenhoek J. Microbiol. Serol.67, 255–260 (1995).

    Article  Google Scholar 

  • Stouthamer A.H., Tietze G.A.: Bacteriocin production by members of the genusKlebsiella.Antonie van Leeuwenhoek J. Microbiol. Serol.32, 171–182 (1966).

    Article  CAS  Google Scholar 

  • Suzuki H.: Colicin E3 inhibits rabbit globin synthesis.FEBS Lett.89, 121–125 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi Y., Maejima T., Mitsuhashi S.: Mechanism oftonB-dependent transport of KP736, a 1,5-dihydroxy-4-pyridone-substituted cephalosporin, intoEscherichia coli K-12 cells.Antimicrob. Agents. Chemother.39, 613–619 (1995).

    PubMed  CAS  Google Scholar 

  • Threlfall E.J., Holland I.B.: Co-transduction with SerB of a pleiotropic mutation affecting colicin E2 refractivity, ultraviolet sensitivity, recombination proficiency and surface properties ofEscherichia coli K12.J. Gen. Microbiol.62, 383–398 (1970).

    PubMed  CAS  Google Scholar 

  • Toba M., Masaki H., Ohta T.: Colicin E8, a DNase which indicates an evolutionary relationship between colicins E2 and E3.J. Bacteriol.170, 3237–3242 (1988).

    PubMed  CAS  Google Scholar 

  • Uratani Y., Cramer W.A.: Reconstitution of colicin E1 into dimyristoylphosphatidylcholine membrane vesicles.J. Biol. Chem.256, 4017–4023 (1981).

    PubMed  CAS  Google Scholar 

  • Viejo M.B., Enfedaque J., Guasch J.F., Ferrer S., Regué M.: Protection against bacteriocin 28b inSerratia marcescens is apparently not related to the expression of an immunity gene.Can. J. Microbiol.41, 217–226 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Viejo M.B., Gargallo D., Ferrer S., Enfedaque J., Regué M.: Cloning and DNA sequence analysis of a bacteriocin gene fromSerratia marcescens.J. Gen. Microbiol.138, 1737–1743 (1992).

    PubMed  CAS  Google Scholar 

  • Viklický V., Šmarda J., Dráber Petr, Pokorná Z., Mach J., Dráber Pavel: The cytoplasmic membrane as a site of the primary effect of colicin on eucaryotic cells.Folia Biol. (Prague)25, 116–125 (1979).

    Google Scholar 

  • van der Wal F.J., ten Hagen C.N., Oudega B., Luirink J.: Application of the pColDF13 bacteriocin release protein in the release of the heterologous proteins ofEscherichia coli: production of plant α-galactosidase.Biotechnol. Lett.17, 815–820 (1995a).

    Article  Google Scholar 

  • van der Wal F.J., Luirink J., Oudega B.: Bacteriocin release proteins: mode of action, structure and biotechnological application.FEMS Microbiol. Rev.17, 381–399 (1995b).

    Article  PubMed  Google Scholar 

  • Vollmer W., Pilsl H., Hantke K., Holtje J.-V., Braun V.: Pesticin displays muramidase activity.J. Bacteriol.179, 1580–1583 (1977).

    Google Scholar 

  • Whielan K.F., Colleran E., Taylor D.E.: Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478.J. Bacteriol.177, 5016–5027 (1995).

    Google Scholar 

  • Wooldridge K.G., Williams P.H.: Sensitivity ofEscherichia coli to cloacin DF13 involves the major outer membrane protein OmpF.J. Bacteriol.173, 2420–2424 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original version of this review was published in Czech in the journal “Biologické listy”,62, 107–130 (1997).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šmarda, J., Šmajs, D. Colicins—Exocellular lethal proteins ofEscherichia coli . Folia Microbiol 43, 563–582 (1998). https://doi.org/10.1007/BF02816372

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816372

Keywords

Navigation