Skip to main content
Log in

Attenuation of excitotoxic cell swelling and GABA release by the GABA transport inhibitor SKF 89976A

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Acute excitotoxicity in the chick retina is characterized by cellular swelling and the subsequent selective release of GABA. In order to understand the source of GABA release, embryonic day 15 retina were incubated with 1mM glutamate for 30 min in the presence or absence of the GABA transport inhibitor SKF 89976A (1–100 μM). SKF 89976A dose-dependently attentuated glutamate-induced GABA release (IC50, 39 μM). Histological examination of retina showed that SKF 89976A greatly reduced cellular swelling caused by glutamate exposure. Interaction of SKF 89976A with glutamate receptors was ruled out as a possible reason for protection vs acute glutamate excitotoxicity, since SKF 89976A had no effect on glutamate receptor-induced22Na+ influx. In contrast, the NMDA antagonist, MK-801, significantly blocked glutamate-evoked22Na+ uptake. These studies indicate that reversal of the GABA transporter contributes to the bulk of GABA release during acute excitotoxicity in retina. Further, a net effect of the presence of SKF 89976A during glutamate exposure is reduction in cellular swelling. It is not clear at present if attenuation of swelling is mediated specifically by an interaction with the GABA transporter or by a nonspecific or indirect effect of SKF 89976A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belhage B., Hansen G. H., and Schousboe A. (1993) Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABA-ergic neurons: Vesicular versus non-vesicular release of GABA.Neuroscience 54, 1019–1034.

    Article  PubMed  CAS  Google Scholar 

  • Cammack J. N. and Schwartz E. A. (1993) Ions required for the electrogenic transport of GABA by horizontal cells of the catfish retina.J. Physiol. 472, 81–102.

    PubMed  CAS  Google Scholar 

  • Corey J. L., Guastella J., Davidson N., and Lester H. A. (1994) GABA uptake and release by a mammalian cell line stably expressing a cloned rat brain GABA transporter.Mol. Membr. Biol. 11, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Dunlop J., Grieve A., Schousboe A., and Griffiths R. (1991) Stimulation of gamma[3H]aminobutyric acid release from cultured mouse cerebral cortex neurons by sulphur-containing excitatory amino acid transmitter candidates: Receptor activation mediates two distinct mechanisms of release.J. Neurochem. 57, 1388–1397.

    Article  PubMed  CAS  Google Scholar 

  • Harris K. M. and Miller R. J. (1989) Excitatory amino acid-evoked release of [3H] GABA from hippocampal neurons in primary culture.Brain Res. 482, 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann H. and Mockel V. (1991) Release of gamma-amino[3H]butyric acid from cultured amacrine-like neurons mediated by different excitatory amino acid receptors.J. Neurochem. 56, 923–932.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe E. H. and Vaello M. L. (1988) Two different release mechanisms of 2H-GABA induced by glutamate in the rat olfactory bulb.P. R. Health Sci. J. 9, 99–101.

    Google Scholar 

  • Jonsson U., Lundstrom M., Sellstrom A., and Ehinger B. (1986) Calcium-independent release of gamma-aminobutyrate from nerve processes in the developing rabbit retina.Neuroscience 17, 1235–1241.

    Article  PubMed  CAS  Google Scholar 

  • Keynan S. and Kanner B. I. (1988) Gamma-aminobutyric acid transport in reconstituted preparations from rat brain: Coupled preparations from rat brain: Coupled sodium and chloride fluxes.Biochemistry 27, 12–17.

    Article  PubMed  CAS  Google Scholar 

  • Larsson O. M., Falch E., Krogsgaard-Larson P., and Schousboe A. (1988) Kinetic characterization of inhibition of gamma-aminobutyric acid uptake into cultured neurons and astrocytes by 4,4-diphenyl-3-butenyl derivatives of nipecotic acid and guvacine.J. Neurochem. 50, 818–823.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Olney J. W. (1982) The toxic effects of glutamate and related compounds in the retina and the brain.Retina 2, 341–359.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W., Price M. T., Samson L., and Labruyere J. (1986) The role of specific ions in glutamate neurotoxicity.Neurosci. Lett. 65, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Oset-Gasque M. J., Castro E., and Gonzalez M. P. (1990) Mechanisms of 3H-gamma-aminobutyric acid release by chromaffin cells in primary culture.J. Neurosci. Res. 26, 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Pin J. P. and Bockaert J. (1989) Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture.J. Neurosci. 9, 648–656.

    PubMed  CAS  Google Scholar 

  • Schwartz E. (1982) Calcium-independent release of GABA from isolated horizontal cells of the toad retina.J. Physiol. 323, 211–227.

    PubMed  CAS  Google Scholar 

  • Weiss S. (1988) Excitatory amino acid-evoked release of gamma-[3H]aminobutyric acid from striatal neurons in primary culture.J. Neurochem. 51, 435–441.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla S. and Kleinschmidt J. (1983) Carrier-mediated release of GABA from retinal horizontal cells.Brain Res. 263, 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk G. D. and Nicklas W. J. (1989) Excitotoxicity in chick retina caused by the unusual amino acids BOAA and BMAA: Effects of MK-801 and Kynurenate.Neurosci. Lett. 102, 284–290.

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk G. D. and Nicklas W. J. (1991) Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition.J. Pharmacol. Exp. Ther. 257, 870–878.

    PubMed  CAS  Google Scholar 

  • Zeevalk G. D. and Nicklas W. J. (1992a) Evidence that the loss of the voltage-dependent Mg2+ block at theN-methyl-d-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism.J. Neurochem. 59, 1211–1220.

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk G. D. and Nicklas W. J. (1992b) Developmental differences in antagonism of NMDA toxicity by the polyamine site antagonist ifenprodil.Dev. brain Res. 65, 147–155.

    Article  CAS  Google Scholar 

  • Zeevalk G. D., Hyndman A. G., and Nicklas W. J. (1989) Excitatory amino acid-induced toxicity in chick retina: Amino acid release, histology and effects of chloride channel blockers.J. Neurochem. 53, 1610–1619.

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk G. D., Schoepp D., and Nicklas W. J. (1993) Aurintricarboxylic acid prevents NMDA-mediated excitotoxicity: Evidence for its action as an NMDA receptor antagonist.J. Neurochem. 61, 386–389.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeevalk, G.D., Nicklas, W.J. Attenuation of excitotoxic cell swelling and GABA release by the GABA transport inhibitor SKF 89976A. Molecular and Chemical Neuropathology 29, 27–36 (1996). https://doi.org/10.1007/BF02815191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815191

Index Entries

Navigation