Skip to main content
Log in

Antiproton-nucleus interaction at intermediate energies

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The more recent experimental results in antiproton-nucleus physics from CERN, KEK, Serpukhov and ITEP are reviewed. Some typical experiments are discussed with the aim to underline the capabilities of the antiproton in investigating nuclear physics properties and the agreement between the intranuclear cascade (INC) models and the main bulk of data. Recent theoretical developments, beyond and refining the INC models, such as the «clan picture» and the «trawling effect», are examined. Special attention is reserved to those experimental «cases» which cannot be explained within the conventional framework, indicating the possible evidence of unusual annihilations. The physical meaning of unusual (multi-nucleon) annihilations is recalled. Reactions which can favour multinucleon annihilations, specifically Pontecorvo reactions, are examined. The theoretical models which deal with multinucleon annihilations are recalled, together with the specific signatures, in particular strangeness enhancement. Finally, all the possible experimental evidences, up to now, of unusual annihilations are reported and discussed. In particular, the recent measurement of strangeness production from annihilation on a complex nucleus, performed at ITEP, is here reported for the first time.

Riassunto

Vengono passati in rassegna i più recenti risultati sperimentali nella fisica antiprotone-nucleo ottenuti al CERN, a KEK, a Serpukhov e all’ITEP. Vengono discussi alcuni esperimenti tipici con l’intento di mettere in evidenza le potenzialità dell’antiprotone nello studio della Fisica Nucleare e il sostanziale accordo tra le previsioni dei modelli a cascata intranucleare (INC) e la grande maggioranza dei risultati sperimentali. Sono esaminati recenti sviluppi teorici, al di là e perfezionando i modelli INC, quali il modello a «clan» e l’effetto «trawling». Un’attenzione particolare viene riservata a quei «casi» sperimentali che non trovano spiegazione negli schemi convenzionali e pertanto suggeriscono la possibile evidenza di annichilazioni inusuali. Viene richiamato il significato fisico delle annichilazioni inusuali, o su molti nucleoni. Vengono esaminate quelle reazioni che possono favorire le annichilazioni su molti nucleoni, specificamente le cosiddette reazioni di Pontecorvo. Vengono passati in rassegna i modelli teorici che trattano le annichilazioni su molti nucleoni, con le relative previsioni di specifiche segnature, in particolare l’aumento nella produzione di stranezza. Infine vengono riportate, e discusse, tutte le possibili evidenze sperimentali di annichilazioni inusuali ottenute fino ad oggi. In particolare, vengono riportati per la prima volta in questo lavoro i risultati della recente misura eseguita all’ITEP sulla produzione di stranezza da annichilazione di antiprotoni su nuclei complessi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PS 184 Collaboration (G. Bruge et al.:Phys. Rev. C,37, 1345 (1988).

    Google Scholar 

  2. PS 179 Collaboration (F. Balestra et al.):Proceedings of the IX HEP Conference, Dubna, 1988.

  3. PS 179 Collaboration (F. Balestra et al.):Phys. Lett. B,194, 343 (1987).

    Article  Google Scholar 

  4. PS 179 Collaboration (F. Balestra et al.):Phys. Lett. B,215, 247 (1988).

    Article  Google Scholar 

  5. PS 179 Collaboration (F. Balestra et al.):Nucl. Phys. A,452, 576 (1986).

    Google Scholar 

  6. PS 179 Collaboration (F. Balestra et al.):Nucl. Phys. A,491, 541 (1989).

    Article  Google Scholar 

  7. PS 171 Collaboration (J. Riedlberger et al.): Contribution to the IX European Symposium on\(p\bar p\) Interactions and Fundamental Symmetries, Mainz, 1988.

  8. PS 179 Collaboration (F. Balestra et al.):Nucl. Phys. A,465, 714 (1978).

    Google Scholar 

  9. PS 179 Collaboration (F. Balestra et al.):Nucl. Phys. A,474, 651 (1987).

    Article  Google Scholar 

  10. PS 179 Collaboration (F. Balestra et al.):Nucl. Phys. A,491, 575 (1989).

    Google Scholar 

  11. PS 186 Collaboration (W. Markiel et al.):Nucl. Phys. A,485, 445 (1988).

    Article  Google Scholar 

  12. PS 186 Collaboration (P. Hofmann et al.):Nucl. Phys. A (submitted).

  13. PS 179 Collaboration (F. Balestra et al.):Nuovo Cimento A,100, 323 (1988).

    Article  Google Scholar 

  14. PS 179 Collaboration (F. Balestra et al.):Phys. Lett. B,194, 192 (1987).

    Article  Google Scholar 

  15. PS 179 Collaboration (F. Balestra et al.):Phys. Lett. B,217, 43 (1989).

    Article  ADS  Google Scholar 

  16. PS 179 Collaboration (F. Balestra et al.): PS179 experiment, to be published.

  17. G. A. Smith: inThe elementary structure of matter, edited byJ.-M. Richard, E. Aslanides andN. Boccara (Springer-Verlag, Berlin, 1988), p. 219.

    Chapter  Google Scholar 

  18. PS 177 Collaboration (J. P. Bocquet et al.):Phys. Lett. B,182, 146 (1986).

    Article  Google Scholar 

  19. PS 177 Collaboration (J. P. Bocquet et al.):Phys. Lett. B,129, 312 (1987).

    Google Scholar 

  20. PS 183 Collaboration (A. Angelopoulos et al.):Phys. Lett. B,205, 590 (1988).

    Article  Google Scholar 

  21. PS 177 Collaboration (J. P. Bocquet et al.): inPhysics at LEAR with Low Energy Antiprotons, edited byC. Amsler, G. Backenstoss, R. Klapisch, C. Leluc, D. Simon andL. Tauscher (Harwood Acad. Publ. Chur, 1988), p. 793.

    Google Scholar 

  22. PS 183 Collaboration (T. A. Armstrong et al.):Z. Phys. A,332, 467 (1989).

    Google Scholar 

  23. PS 186 Collaboration (H. Machner et al.):Phys. Rev. Lett. (submitted).

  24. PS 186 Collaboration (E. F. Moser et al.):Phys. Lett. B,179, 25 (1986).

    Article  Google Scholar 

  25. PS 186 Collaboration (E. F. Moser et al.):Z. Phys. A,333, 89 (1989).

    Google Scholar 

  26. V. F. Andreev et al.: preprint Lebedev Institute of Moscow No. 33, FIAN (1987).

  27. V. V. Barmin, V. G. Barylov, G. V. Davidenko, V. S. Demidov, A. G. Dolgolenko, V. A. Ergakov, V. M. Golubchikov, V. A. Matveev, A. G. Meshkovsky, G. S. Mirosidi, A. N. Nikitenko, Yu. V. Trebukhovsky, V. A. Shebanov, N. N. Shishov andN. K. Zombkovskaya: ITEP (Moscow), private communication.

  28. K. Miyano, Y. Noguchi, Y. Yoshimura, M. Fukawa, F. Ochiai, T. Sato, R. Sugahara, A. Suzuki, K. Takahashi, F. Fujiwara, S. Noguchi, S. Yamashita, A. Ono, M. Chikawa, O. Kusumoto andT. Okusawa:Phys. Rev. Lett.,53, 1725 (1984).

    Article  ADS  Google Scholar 

  29. K. Miyano et al.: Phys. Rev. C (submitted), and KEK (Preprint) 87-160 (February 1988).

  30. K. Miyano:Hadronic Matter in Collision (Tucson, Ariz., 1988).

  31. J. Cugnon, P. Deneye andJ. Vandermeulen:Phys. Rev. C,38, 795 (1988).

    Article  ADS  Google Scholar 

  32. Ye. S. Golubeva, A. S. Iljinov, A. S. Botvina andN. M. Sobolevsky:Nucl. Phys. A,483, 539 (1988).

    Article  ADS  Google Scholar 

  33. M. R. Clover, R. M. De Vries andN. J. Di Giacomo:Phys. Rev. C,26, 2138 (1982).

    Article  ADS  Google Scholar 

  34. A. S. Iljinov, V. I. Nazaruk andS. E. Chigrinov:Nucl. Phys. A,382, 378 (1982).

    Article  ADS  Google Scholar 

  35. M. Cahay, J. Cugnon andJ. Vandermeulen:Phys. Lett. B,115, 7 (1982).

    Article  ADS  Google Scholar 

  36. M. Cahay, J. Cugnon andJ. Vandermeulen:Nucl. Phys. A,393, 237 (1983).

    Article  ADS  Google Scholar 

  37. J. Cugnon andJ. Vandermeulen:Nucl. Phys. A,445, 717 (1985).

    Article  ADS  Google Scholar 

  38. J. Cugnon, P. Jasselette andJ. Vandermeulen:Nucl. Phys. A,470, 558 (1987).

    Article  ADS  Google Scholar 

  39. P. Jasselette, J. Cugnon andJ. Vandermeulen:Nucl. Phys. A,484, 542 (1988).

    Article  ADS  Google Scholar 

  40. P. L. McGaughey, M. R. Clover andN. J. Di Giacomo:Phys. Lett. B 166, 264 (1986).

    Article  ADS  Google Scholar 

  41. J. Cugnon: inThe Elementary Structure of Matter, edited byJ.-M. Richard, E. Aslanides andN. Boccara (Springer-Verlag, Berlin, 1988), p. 211.

    Chapter  Google Scholar 

  42. A. S. Botvina, A. S. Iljinov andI. N. Mishustin:Phys. Lett. B,205, 421 (1988).

    Article  ADS  Google Scholar 

  43. UA5 Collaboration (G. J. Alner et al.):Phys. Lett. B,160, 193 (1985).

    Article  ADS  Google Scholar 

  44. HRS Collaboration (M. Derrick et al.):Phys. Lett. B,168, 299 (1986).

    Article  Google Scholar 

  45. A. Giovannini andL. Van Hove:Z. Phys. C,30, 391 (1986).

    Article  ADS  Google Scholar 

  46. L. Van Hove andA. Giovannini:Proceedings of the XVII International Symposium on Multiparticle Dynamics, Seewinkel, Austria, 1986.

  47. J. Cugnon:Z. Phys. A,327, 187 (1987).

    ADS  Google Scholar 

  48. PS 179 Collaboration (Yu. A. Batusov et al.):Europhys. Lett.,2, 115 (1986).

    Article  Google Scholar 

  49. J. Cugnon, P. Jasselette andJ. Vandermeulen:Europhys. Lett.,4, 535 (1987).

    Article  ADS  Google Scholar 

  50. P. L. Mc Gaughey, K. D. Bol, M. R. Clover, R. M. De Vries, N. J. Di Giacomo, J. S. Kapustinsky, W. E. Sondheim, G. R. Smith, J. W. Sunier, Y. Yariv, M. Buenerd, J. Chauvin, D. Lebrun, P. Martin andJ. C. Dousse:Phys. Rev. Lett.,56, 2156 (1986).

    Article  ADS  Google Scholar 

  51. W. Bauer, D. R. Dean, U. Mosel andU. Post:Phys. Lett. B,150, 53 (1985).

    Article  ADS  Google Scholar 

  52. X. Campi:J. Phys. A,19, L917 (1986).

    Article  ADS  Google Scholar 

  53. J. Desbois, O. Granier andC. Ngô:Z. Phys. A,325, 245 (1986).

    ADS  Google Scholar 

  54. B. M. Pontecorvo:Ž. Eksp. Teor. Fiz.,30, 947 (1956).

    Google Scholar 

  55. J. Rafelski:Phys. Lett. B,91, 281 (1980).

    Article  ADS  Google Scholar 

  56. S. J. Brodsky: inPhysics at LEAR with Low Energy Antiprotons, edited byC. Amsler, G. Backenstoss, R. Klapisch, C. Leluc, D. Simon andL. Tauscher (Harwood Acad. Publ., Chur, 1988), p. 317.

    Google Scholar 

  57. J. Rafelski: inPhysics at LEAR with Low Energy Cooled Antiprotons, edited byU. Gastaldi andR. Klapish (Plenum, New York, N.Y., 1984), p. 507.

    Chapter  Google Scholar 

  58. C. Derreth, W. Greiner, H.-Th. Elze andJ. Rafelsky:Phys. Rev. C,31, 1360 (1985).

    Article  ADS  Google Scholar 

  59. S. J. Brodsky:Proceedings of the Fermilab LEAF Workshop (FNAL, Batavia, 1986), p. 131.

    Google Scholar 

  60. J. Cugnon and,J. Vandermeulen:Ann. Phys. (Paris),14, 49 (1989).

    ADS  Google Scholar 

  61. J. Cugnon andJ. Vandermeulen:Phys. Lett. B,146, 16 (1984).

    Article  ADS  Google Scholar 

  62. J. Rafelski andB. Müller:Phys. Rev. Lett.,48, 1066 (1982);56, 2334 (E) (1986).

    Article  ADS  Google Scholar 

  63. J. Cugnon andJ. Vandermeulen:Phys. Rev. C,36, 2726 (1987).

    Article  ADS  Google Scholar 

  64. J. Cugnon andJ. Vandermeulen:Phys. Rev. C,39, 181 (1989).

    Article  ADS  Google Scholar 

  65. B. Y. Oh, P. S. Eastman, Z. Ming Ma, D. L. Parker, G. A. Smith andR. J. Sprafka;Nucl. Phys. B,51, 57 (1973).

    Article  ADS  Google Scholar 

  66. R. Bizzarri, G. Ciapetti, U. Dore, E. C. Fowler, P. Guidoni, I. Laakso, F. Marzano, G. C. Monetti, D. Zanello, L. Gray, P. Hagerty, T. Kalogeropoulos andS. Zenone:Lett. Nuovo Cimento,2, 431 (1969).

    Article  Google Scholar 

  67. L. A. Kondratyuk andM. G. Sapozhnikov:Phys. Lett. B,220, 333 (1989).

    Article  ADS  Google Scholar 

  68. S. H. Parkin, S. N. Tovey andJ. W. G. Wignall:Nucl. Phys. B,227, 634 (1986).

    Article  ADS  Google Scholar 

  69. F. Ochiai, Y. Yoshimura, M. Chikawa, N. Fujiwara, M. Fukawa, H. Kichimi, E. Kohriki, O. Kusumoto, J. MacNaughton, K. Miyano, S. Noguchi, T. Okusawa, A. Ono, T. Sato, R. Sugahara, A. Suzuki, K. Takahashi andS. Yamashita:Z. Phys. C,23, 369 (1984).

    Article  ADS  Google Scholar 

  70. S. Noguchi, N. Fujiwara, M. Chikawa, M. Fukawa, H. Kichimi, E. Kohriki, O. Kusumoto, J. MacNaughton, K. Miyano, Y. Noguchi, F. Ochiai, T. Okusawa, A. Ono, T. Sato, R. Sugahara, A. Suzuki, K. Takahashi, S. Yamashita andY. Yoshimura:Z. Phys. C,24, 297 (1984).

    Article  ADS  Google Scholar 

  71. V. V. Barmin, V. G. Barylov, G. V. Davidenko, V. S. Demidov, A. G. Dolgolenko, V. A. Ergakov, V. M. Golubchikov, V. A. Matveev, A. G. Meshkovsky, G. S. Mirosidi, A. N. Nikitenko, Yu. V. Trebukhovsky, V. A. Shebanov, N. N. Shishov andN. K. Zombkovskaya:J. PTE,4, 63 (1984).

    Google Scholar 

  72. C. B. Dover andP. Koch:Hadronic Matter in Collision (Tucson, Ariz., 1988).

  73. J. Rafelski:Phys. Lett. B,207, 371 (1988).

    Article  ADS  Google Scholar 

  74. C. M. Ko andR. Yuan:Phys. Lett. B,192, 31 (1987).

    Article  ADS  Google Scholar 

  75. P. S. Eastman Z. Ming Ma, B. Y. Oh, K. L. Parker, G. A. Smith andR. J. Sprafka:Nucl. Phys. B,51, 29 (1973).

    Article  ADS  Google Scholar 

  76. T. Johansson: inPhysics at LEAR with Low Energy Cooled Antiprotons, edited byU. Gastaldi andR. Klapish (Plenum, New York, N.Y., 1984), p. 589.

    Chapter  Google Scholar 

  77. M. Rey Campagnolle:International Symposium on Hypernuclear and Low Energy Kaon Physics, Legnaro, 1988 and CERN-EP/89-13.

  78. H. Muirhead andP. S. Gregory: III European Symposium on {ie1169-1} Interactions (Pergamon, Oxford, 1977), p. 331.

    Google Scholar 

  79. V. S. Barashenkov, A. S. Iljinov, N. M. Sobolevskii andV. D. Toneev:Usp. Fiz. Nauk,109, 91 (1973).

    Article  Google Scholar 

  80. V. S. Barashenkov, A. S. Iljinov, N. M. Sobolevskii andV. D. Toneev:Sov. Phys. Usp.,16, 91 (1973).

    Article  Google Scholar 

  81. V. S. Barashenkov, A. S. Iljinov andV. D. Toneev:Yad. Fiz.,13, 743 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guaraldo, C. Antiproton-nucleus interaction at intermediate energies. Nuov Cim A 102, 1137–1173 (1989). https://doi.org/10.1007/BF02813052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02813052

Keywords

Keywords

Navigation