Skip to main content
Log in

Grain boundary segregation and grain growth inhibition in silicon iron: The effect of boron and nitrogen

  • Symposium on Recovery, Recrystallization and Grain Growth in Materials
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The degree of grain growth inhibition in iron-3.1 pct silicon alloys with small additions of boron, nitrogen and sulfur has been observed to correlate strongly with the degree of nitrogen segregation to the grain boundaries. Grain growth was seen to increase monotonically with decreasing nitrogen segregation at 950°C, the temperature at which significant grain growth was first observed to occur. Boron affected the retention of nitrogen in the material at high temperatures and in this way had an indirect effect on grain growth inhibition. Sulfur acted to enhance the effectiveness of nitrogen as a grain growth inhibitor. It is suggested that nitrogen, even at very low grain boundary concentrations affects grain boundary migration by poisoning sites at the grain boundaries which are particularly efficient in attaching atoms to the growing grain surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Burke:Trans. AIME, 1949, vol. 185, p. 315.

    Google Scholar 

  2. J. E. May and D. Turnbull:Trans. TMS-AIME, 1958, vol. 212, p. 769.

    CAS  Google Scholar 

  3. C. G. Dunn and J. L., Walter:Recrystallization, Grain Growth, and Texture, p. 461, ASM, Metals Park, Ohio, 1966.

    Google Scholar 

  4. R. W. Cahn:Physical Metallurgy, p. 1181, North-Holland, Amsterdam, 1970.

    Google Scholar 

  5. P. Cotterill and P. R. Mould:Recrystallization and Grain Growth in Metals, J. Wiley and Sons, New York, 1976.

    Google Scholar 

  6. Boron-silicon steel will refer to iron-3 pct silicon alloys with additions of boron, nitrogen and sulfur for grain growth inhibition as described in Refs. 7 and 8.

  7. H. E. Genoble: U. S. Patent No. 3,905,842, September 16, 1975.

  8. H. C. Fiedler: U.S. Patent No. 3,905,843, September 16, 1975.

  9. J. E. May and D. Turnbull:J. Appl. Phys., 1959, vol. 30, p. 210.

    Article  Google Scholar 

  10. S. Taguchi, A. Sakakura, and H. Takashima: U.S. Patent No. 3,287,183. 1966.

  11. H. E. Grenobie:IEEE Trans. Magnetics, 1977, vol. 13, p. 1427.

    Article  Google Scholar 

  12. H. C. Fiedler:Met. Trans. A, 1977, vol. 8A, p. 1307.

    Article  CAS  Google Scholar 

  13. H. C. Fiedier:IEEE Trans. Magnetics, 1977, vol. 13, p. 1433.

    Article  Google Scholar 

  14. K. T. Aust and J. W. Rutter:Recovery and Recrystallization of Metals, L. Himmel, ed., p. 171, Interscience, New York, 1963.

    Google Scholar 

  15. T. Saito:Nihon Kinzoku Gakkai-Shi, 1963, vol. 27, p. 186.

    CAS  Google Scholar 

  16. C. J. Simpson, W. C. Winegard, and K. T. Aust:Grain Boundary Structure and Properties, G. A. Chadwick and D. A. Smith, eds., p. 201, Academic Press, London, 1976.

    Google Scholar 

  17. H. Gleiter and B. Chalmers: “High Angle Grain Boundaries”,Progr. Mater. Sci., vol. 16, Pergamon Press, Oxford, 1972.

    Google Scholar 

  18. K. Lücke and K. Detert:Acta Met., 1957, vol. 5, p. 628.

    Article  Google Scholar 

  19. J. W. Cahn:Acta Met., 1962, vol. 10, p. 789.

    Article  CAS  Google Scholar 

  20. K. Lücke and H. P. Stüwe:Recovery and Recrystallization of Metals, L. Himmel, ed., p. 171, Interscience, New York, 1963.

    Google Scholar 

  21. P. Gordon and R. A. Vandermeer:Recrystallization Grain Growth and Textures, p. 205, ASM, Metals Park, Ohio, 1966.

    Google Scholar 

  22. J. L. Walter and E. F. Koch:Acta Met., 1963, vol. 11, p. 923.

    Article  CAS  Google Scholar 

  23. H. Hu:Recovery and Recrystallization of Metals, L. Himmel, ed., p. 311, Interscience, New York, 1963.

    Google Scholar 

  24. I. L. Dillamore, P. L. Morris, C. J. E. Smith, and W. B. Hutchinson:Proc. Roy. Soc. A, 1972, vol. 329A, p. 405.

    Article  Google Scholar 

  25. E. Furubayashi:Trans. Iron Steel Inst. Jpn., 1969, vol. 9, p. 222.

    CAS  Google Scholar 

  26. M. Shinozaki, I. Matoba, T. Kan, and T. Gotoh:Trans. Jpn. Inst. Metals, 1978, vol. 19, p. 85.

    CAS  Google Scholar 

  27. H. C. Fiedler: Unpublished research, General Electric Co., Corporate Research and Development, Schenectady, NY, 1977.

  28. Model 590 Scanning Auger Microprobe, Physical Electronics Industries, Inc., Eden Prairie, MN 55343.

  29. Handbook of Auger Electron Spectroscopy, Physical Electronics Industries, Inc., Eden Prairie, MN 55343, 1976.

  30. F. Pons, J. LeHericy, and J. P. Langeron:Surf. Sci., 1977, vol. 69, p. 565.

    Article  CAS  Google Scholar 

  31. L. Marchut and C. J. McMahon, Jr.:J. Vac. Sci. Technol., 1978, vol. 15, p. 450.

    Article  Google Scholar 

  32. J. M. Morabita and P. M. Hall:Scanning Electron Microsc., 1976, vol. 9, p. 221.

    Google Scholar 

  33. E. N. Sickafus:J. Vac. Sci. Technol., 1974, vol. 11, p. 299.

    Article  CAS  Google Scholar 

  34. P. Jolly and C. Goux:Comptes Rendus, 1969, vol. 268C, p. 577.

    Google Scholar 

  35. C. Pichard, J. Rieu, and C. Goux:Comptes Rendus, 1975, vol. 280C, p. 633.

    Google Scholar 

  36. C. Pichard, M. Guttmann, J. Rieu, and C. Goux.J. DePhysique, colleque C4, suppl. 10, p. 151, 1975.

    Google Scholar 

  37. R. G. Rowe and C. L. Briant:Proc. 13th Annual Conf. Microbeam Anal. Soc., p. 71A, June 1978.

  38. D. R. Penn:J. Electron Spectrosc. Rel. Phenom., 1976, vol. 9, p. 29.

    Article  CAS  Google Scholar 

  39. D. McLean:Grain Boundaries in Metals, Oxford University Press, London, 1957.

    Google Scholar 

  40. M. P. Seah and D. Hondros:Proc. Roy. Soc. London, 1973, vol. A335, p. 191.

    Article  CAS  Google Scholar 

  41. M. Guttmann:Surf. Sci., 1975, vol. 53, p. 213.

    Article  CAS  Google Scholar 

  42. R. W. Fountain and J. Chipman:Trans. TMS-AIME, 1962, vol. 224, p. 599.

    CAS  Google Scholar 

  43. T. Matsuoka:Trans. Iron Steel Inst. Jpn., 1967, vol. 7, p. 19.

    Google Scholar 

  44. H. C. Fiedler:Met. Trans. A, 1978, vol. 9A, p. 1489.

    Article  CAS  Google Scholar 

  45. F. Bacon: Unpublished research, General Electric Co., Corporate Research and Development, Schenectady, NY, 1977.

  46. C. Zener, as communicated by C. S. Smith:Trans. AIME, 1949, vol. 175, p. 15.

    Google Scholar 

  47. M. F. Ashby, J. Harper, and J. Lewis:Trans. TMS-AIME, 1969, vol. 245, p. 413.

    CAS  Google Scholar 

  48. P. Hellman and M. Hillert:Scand. J. Metall., 1975, vol. 4, p. 211.

    CAS  Google Scholar 

  49. W. M. Swift:Met. Trans., 1973, vol. 4, p. 841.

    Article  CAS  Google Scholar 

  50. J. W. Flowers and S. P. Karas:J. Appl. Phys., 1967, vol. 38, p. 1085.

    Article  CAS  Google Scholar 

  51. R. E. Fryxell, N. Galitzine, and F. S. Gardner:J. Iron Steel Inst., 1958. vol. 189, p. 327.

    CAS  Google Scholar 

  52. A. Brown, J. D. Garnish, and R. W. K. Honeycombe:Metals Sci., 1974, vol. 8, p. 317.

    Article  CAS  Google Scholar 

  53. H. C. Fiedler:Trans TMS-AIME, 1969, vol. 245, p. 941.

    CAS  Google Scholar 

  54. N. G. Ainslie and A. U. Seybolt:J. Iron Steel Inst., 1960, vol. 194, p. 341.

    CAS  Google Scholar 

  55. J. D. Fast and M. B. Verrijp:J. Iron Steel Inst., 1954, vol. 176, p. 24.

    CAS  Google Scholar 

  56. H. Hu and B. B. Rath:Met. Trans., 1970, vol. 1, p. 3131.

    Google Scholar 

  57. P. E. Busby and C. Wells:Trans. AIME, 1954, vol. 200, p. 972.

    Google Scholar 

  58. K. Lücke and H. P. Stüwe:Acta Met., 1971, vol. 19, p. 1087.

    Article  Google Scholar 

  59. R. A. Oriani:Acta Met., 1959, vol. 7, p. 62.

    Article  Google Scholar 

  60. W. Kossel:Nachr Ges. Wiss. Gottingen, 1927, p. 135.

  61. N. Cabrera and D. A. Vermilyea:Growth and Perfection of Crystals, R. H. Doremus, B. W. Roberts, and D. Turnbull, eds., p. 393, J. Wiley and Sons, NY, 1958.

    Google Scholar 

  62. F. C. Frank:Growth and Perfection of Crystals, R. H. Doremus, B. W. Roberts, and D. Turnbull, eds., p. 411, J. Wiley and Sons, NY, 1958.

    Google Scholar 

  63. E. D. Hondros:Proc. Roy. Soc., 1965, vol. 286A, p. 479.

    Google Scholar 

  64. E. D. Hondros and L. E. H. Stuart:Phil. Mag., 1968, vol. 17, p. 711.

    Article  CAS  Google Scholar 

  65. R. G. Rowe, C. L. Briant, and F. Bacon:Proc. 8th Int. Conf. on X-Ray Optics and Microanalysis, 1977, in press.

  66. W. C. Johnson and H. B. Smartt:Met. Trans. A, 1977, vol. 8A, p. 553.

    Article  CAS  Google Scholar 

  67. W. Roberts, P. Grieveson, and K. H. Jack:Proc. Int. Symp. Metall. Chem.-Appl. Ferrous Metall., p. 384, Iron and Steel Inst., London, 1973.

    Google Scholar 

  68. K. Nakanishi, Y. Sakamoto, K. Tsuruoka, and M. Imai:Acta Met., 1972, vol. 20, p. 669.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at a symposium on “Recovery, Recrystallization and Grain Growth in Materials” held at the Chicago meeting of The Metallurgical Society of AIME, October 1977, under the sponsorship of the Physical Metallurgy Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, R.G. Grain boundary segregation and grain growth inhibition in silicon iron: The effect of boron and nitrogen. Metall Trans A 10, 997–1011 (1979). https://doi.org/10.1007/BF02811646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811646

Keywords

Navigation