Skip to main content
Log in

Mathematical model of magnetothermoelasticity of ferromagnetic bodies

  • Published:
Materials Science Aims and scope

Abstract

On the basis of the principal concepts of equilibrium thermodynamics we determine the physical characteristics of a material as functions of selected parameters of the state and deduce expressions for the thermodynamic potentials of thermoelastic bodies. We present phenomenological relations of electrodynamics for a broad class of ferromagnetic materials. By analyzing the law of conservation of the electromagnetic energy for the cases under consideration, we deduce relations for the density of energy of the electromagnetic field and the intensity of hysteresis heat release. We propose expressions for the components of the energy-momentum tensor and establish relations for the ponderomotive forces. On the basis of the principles of nonequilibrium thermodynamics and the concepts of continuum mechanics, we construct a mathematical model of magnetothermoelasticity of ferromagnetic bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. De Groot and P. Mazur,Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  2. I. Gyarmati,Non-Equilibrium Thermodynamics: Field Theory and Variational Principles, Springer, Berlin (1970).

    Google Scholar 

  3. W. Nowacki,Teoria Sprezystosci [in Polish]. PWN, Warszawa (1970).

    Google Scholar 

  4. Yu. N. Rabotnov,Mechanics of Deformable Body [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  5. L. I. Sedov,Continuum Mechanics [in Russian], Vol. 1. Nauka, Moscow (1976).

    Google Scholar 

  6. L. I. Sedov and A. G. Tsypkin,Fundamentals of the Macroscopic Theories of Gravitation and Electromagnetism [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  7. Ya. I. Burak, B. P. Halapats. and B. M. Hnidets,Physicomechanical Processes in Conducting Bodies [in Ukrainian], Naukova Dumka. Kiev (1978).

    Google Scholar 

  8. Ya. S. Pidstryhach, Ya. I. Burak, and V. F. Kondrat,Magnetothermoelasticity of Conducting Bodies [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  9. Yu. L. Klimontovich,Statistical Physics [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  10. I. R. Yukhnovskii and M. F. Golovko,Statistical Theory of Classical Equilibrium Systems [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  11. A. D. Kovalenko,Fundamentals of Thermoelasticity [in Russian], Naukova Dumka, Kiev (1970).

    Google Scholar 

  12. A. D. Kovalenko,Thermoelasticity [in Russian], Vyshcha Shkola, Kiev (1975).

    Google Scholar 

  13. I. R. Orisamoglu and M. C. Singli, “Thermodynamically consistent set of explicit constitutive state equations for inelastic solids,”J. Thermal. Stresses,12, No. 3, 351–368 (1989).

    Article  Google Scholar 

  14. B. A. Kudryavtsev and V. Z. Parton, “Magnetothermoelasticity,” in:Itogi VINITI, Mechanics of Deformable Body [in Russian], Vol. 4, VINITI, Moscow (1981), pp. 3–59.

    Google Scholar 

  15. V. V. Tolmachev, A. M. Golovin, and V. S. Potapov,Thermodynamics and Electrodynamics of Continua [in Russian], Moscow University, Moscow (1988).

    Google Scholar 

  16. R. C. Tolman,Relativity, Thermodynamics, and Cosmology, Clarendon, Oxford (1969).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshits,Electrodynamics of Continua [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

  18. S. R. De Groot and L. G. Suttorp,Foundations of Electrodynamics, North-Holland, Amsterdam (1972).

    Google Scholar 

  19. K. Hutter, “Wave propagation and attenuation in paramagnetic and soft ferromagnetic materials. I,”Int. J. Eng. Sci.,13, No. 12, 1067–1084 (1975).

    Article  Google Scholar 

  20. K. Hutter, “Wave propagation and attenuation in paramagnetic and soft ferromagnetic materials. II,”Int. J. Eng. Sci.,14, No. 10, 883–894 (1976).

    Article  CAS  Google Scholar 

  21. G. A. Maugin and A. C. Eringen, “Performable magnetically saturated media. I. Field equations,”J. Math. Phys.,13, No. 2, 143–155 (1972).

    Article  Google Scholar 

  22. F. C. Moon and S. Chattopadhyay, “Magnetically induced stress waves in a conduction solid—theory and experiment,”Trans. ASME, J. Appl. Mech., Ser. E,41, No. 3, 641–646 (1974).

    Google Scholar 

  23. Y. H. Pao and C. S. Geh, “A linear theory for soft ferromagnetic elastic solids,”Int. J. Eng. Sci.,11, No. 4, 415–436 (1973).

    Article  Google Scholar 

  24. I. E. Tamm,Foundations of the Theory of Electricity [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  25. M. T. Solodyak, “Thermodynamic functions of a mixture of perfect gases in the equilibrium state,”Mat. Met. Fiz.-Mekh. Polya,40, No. 3. 134–140 (1997).

    Google Scholar 

  26. I. P. Bazaroy,Thermodynamics [in Russian], Vysshaya Shkola, Moscow (1983).

    Google Scholar 

  27. J. W. Gibbs,The Collected Works, Longmans, New York (1928).

    Google Scholar 

  28. Ya. I. Burak, O. R. Hatshkevych, and M. T. Solodyak, “Thermoelasticity of conducting low-coercivity solids in stationary external electromagnetic fields,”Dop. Akad. Nauk Ukr. RSR, Ser. A, No. 2. 43–47 (1987).

    Google Scholar 

  29. P. M. Kolesnikov,Introduction to Nonlinear Electrodynamics [in Russian], Nauka i Tekhnika, Minsk (1971).

    Google Scholar 

  30. Ya. I. Burak, O. R. Hatshkevych, and M. T. Solodyak, “Thermoelasticity of conducting high-coercivity solids in stationary external electromagnetic fields,”Dop. Akad. Nauk Ukr. RSR, Ser. A, No. 5, 25–28 (1988).

    Google Scholar 

  31. A. G. Gurevich,Magnetic Resonance in Ferrites and Antiferromagnets [in Russian], Nauka, Moscow (1973).

    Google Scholar 

Download references

Authors

Additional information

Pidstryhach Institute of Applied Problems in Mechanics and Mathematics, Ukrainian Academy of Sciences, L'viv. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 36. No. 1, pp. 7–16, January–February, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solodyak, M.T. Mathematical model of magnetothermoelasticity of ferromagnetic bodies. Mater Sci 36, 1–13 (2000). https://doi.org/10.1007/BF02805110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02805110

Keywords

Navigation