Skip to main content
Log in

The influence of wind and river pulses on an estuarine turbidity maximum: Numerical studies and field observations in Chesapeake Bay

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The effect of pulsed events on estuarine turbidity maxima (ETM) was investigated with the Princeton Ocean Model, a three-dimensional hydrodynamic model. The theoretical model was adapted to a straight-channel estuary and enhanced with sediment transport, erosion, deposition, and burial components. Wind and river pulse scenarios from the numerical model were compared to field observations before and after river pulse and wind events in upper Chesapeake Bay. Numerical studies and field observations demonstrated that the salt front and ETM had rapid and nonlinear responses to short-term pulses in river flow and wind. Although increases and decreases in river flow caused down-estuary and up-estuary (respectively) movements of the salt front, the effect of increased river flow was more pronounced than that of decreased river flow. Along-channel wind events also elicited non-linear responses. The salt front moved in the opposite direction of wind stress, shifting up-estuary in response to down-estuary winds and vice-versa.

Modeled pulsed events affected suspended sediment distributions by modifying the location of the salt front, near-bottom shear stress, and the location of bottom sediment in relation to stratification within the salt front. Bottom sediment accumulated near the convergent zone at the tip of the salt front, but lagged behind the rapid response of the salt front during wind events. While increases in river flow and along-channel winds resulted in sediment transport down-estuary, only reductions in river flow resulted in consistent up-estuary movement of bottom sediment. Model predictions suggest that wind and river pulse events significantly influence salt front structure and circulation patterns, and have an important role in the transport of sediment in upper estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bennett, W. A., W. J. Kimmerer, andJ. R. Burau. 2002. Plasticity in the vertical migration by native and exotic estuarine fishes in a dynamic low-salinity zone.Limnology and Oceanography 47: 1496–1507.

    Google Scholar 

  • Biggs, R. B. 1970. Sources and distribution of suspended sediment in northern Chesapeake Bay.Marine Geology 9:187–201.

    Article  Google Scholar 

  • Blumberg, A. F. andG. L. Mellor. 1987. A description of a three-dimensional coastal ocean circulation model, p. 1–16.In N. Heaps (ed.), Three-Dimensional Coastal Ocean Models, Volume 4. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Boynton, W. R., W. Boicourt, S. Brant, J. Hagy, L. Harding, E. Houde, D. V. Holliday, M. Jech, W. M. Kemp, C. Lascara, S. D. Leach, A. P. Madden, M. Roman, L. Sanford, andE. M. Smith. 1997. Interactions between physics and biology in the estuarine turbidity maximum (ETM) of Chesapeake Bay, USA.International Council for the Exploration of the Sea CM 1997/S:11.

    Google Scholar 

  • Brenon, I. andP. Le Hir. 1999. Modelling the turbidity maximum on the Seine estuary (France): Identification of formation processes.Estuarine, Coastal and Shelf Science 49:525–544

    Article  CAS  Google Scholar 

  • Burchard, H. andH. Baumert. 1998. The formation of estuarine turbidity maxima due to density effects in the salt wedge. A hydrodynamic process study.Journal of Physical Oceanography 28:309–321.

    Article  Google Scholar 

  • Cancino, L. andR. Neves. 1999a. Hydrodynamic and sediment suspension modelling in estuarine systems Part I: Description of numerical models.Journal of Marine Systems 22:105–116.

    Article  Google Scholar 

  • Cancino, L. andR. Neves. 1999b. Hydrodynamic and sediment suspension modelling in estuarine systems. Part II: Application to the western Scheldt and Gironde estuaries.Journal of Marine Systems 22:117–131.

    Article  Google Scholar 

  • Colman, S. M., J. P. Halka, andC. H. Hobbs, III. 1992. Patterns and rates of sedimentation in the Chesapeake Bay during the Holocene rise in sea level, p. 110–111.In C. H. Fletcher and J. F. Wehmiller (eds.), Quaternary Coasts of the United States: Marine and Lacustrine Systems. Special Publication No. 48. Society for Sedimentary Geology, Tulsa, Oklahoma.

    Google Scholar 

  • Dodson, J. J., J. -C. Dauvin, R. G. Ingram, andB. D'Anglejan. 1989. Abundance of larval rainbow smelt (Osmerus mordax) in relation to the maximum turbidity zone and associated macroplanktonic fauna of the middle St. Lawrence estuary.Estuaries 12:66–81.

    Article  Google Scholar 

  • Eisma, D., P. Bernard, G. C. Cadee, V. Ittekkot, R. Laane, J. M. Martin, W. G. Mook, A. Van Put, T. Schuhmacher, andJ. Kalf. 1991. Suspended-matter particle size in some west-European estuaries: Part 1: Particle-size distribution.Netherlands Journal of Sea Research 28:193–214.

    Article  Google Scholar 

  • Elliott, A. J. 1978. Observations of the meteorologically induced circulation in the Potomac estuary.Estuarine and Coastal Marine Science 6:285–299.

    Article  Google Scholar 

  • Elliott, A. J., D.-P. Wang, andD. W. Pritchard. 1978. The circulation near the head of Chesapeake Bay.Journal of Marine Research 36:643–655.

    Google Scholar 

  • Fain, A. M. V., D. A. Jay, D. J. Wilson, P. M. Orton, andA. M. Baptista. 2001. Seasonal and tidal monthly patterns of particulate matter dynamics in the Columbia River estuary.Estuaries 24:770–786.

    Article  CAS  Google Scholar 

  • Festa, J. F. andD. V. Hansen. 1978. Turbidity maxima in partially mixed estuaries: A two-dimensional numerical model.Estuarine, Coastal and Marine Science 7:347–359.

    Article  Google Scholar 

  • Friedrichs, C. T., B. D. Armbrust, andH. E. de Swart. 1998. Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries, p. 315–328.In J. Dronkers and M. Scheffers (eds.), Physics of Estuaries and Coastal Seas. Balkema Press, Rotterdam, The Netherlands.

    Google Scholar 

  • Garvine, R. W. 1999. Penetration of buoyant coastal discharge onto the continental shelf: A numerical model experiment.Journal of Physical Oceanography 29:1892–1909.

    Article  Google Scholar 

  • Garvine, R. W. 2001. The impact of model configuration in studies of buoyant coastal discharge.Journal of Marine Research 59:193–225.

    Article  Google Scholar 

  • Geyer, W. R. 1993. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum.Estuaries 16:113–125.

    Article  Google Scholar 

  • Geyer, W. R. 1997. Influence of wind on dynamics and flushing of shallow estuaries.Estuarine, Coastal and Shelf Science 44:713–722.

    Article  Google Scholar 

  • Geyer, W. R., R. P. Signell, andG. C. Kineke. 1998. Lateral trapping of sediment in a partially mixed estuary, p. 115–124.In J. Dronkers and M. Sheffers (eds.), Physics of Estuaries and Coastal Seas. Balkema Press, Rotterdam, The Netherlands.

    Google Scholar 

  • Geyer, W. R., J. D. Woodruff, andP. Traykovski. 2001. Sediment transport and trapping in the Hudson River estuary.Estuaries 24:670–679.

    Article  Google Scholar 

  • Glangeaud, L. 1938. Transport et sédimentation dans l'estuaire et a l'embouchure de la Gironde. Caracteres Petrographiques des Formations Fluviatiles, Saumatres, Littordes, et Néritiques.Bulletin of Geological Society of France 8:599–630.

    Google Scholar 

  • Grabemann, I. andG. Krause. 2001. On different time scales of suspended matter dynamics in the Weser estuary.Estuaries 24:688–698.

    Article  CAS  Google Scholar 

  • Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R. Schubel, andT. J. Vendlinski. 1995. Isohaline position as a habitat indicator for estuarine populations.Ecological Applications 5:272–289.

    Article  Google Scholar 

  • Jay, D. A. andJ. D. Musiak. 1994. Particle trapping in estuarine tidal flows.Journal of Geophysical Research 99:20,445–20,461.

    Article  Google Scholar 

  • Kappenberg, J. andI. Grabemann. 2001. Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser estuaries.Estuaries 24:699–706.

    Article  Google Scholar 

  • Kimmerer, W. J., J. R. Burau, andW. A. Bennett. 1998. Tidally oriented vertical migration and position maintenance of zoo-plankton in a temperature estuary.Limnology and Oceanography 43:1697–1709.

    Article  Google Scholar 

  • Krone, R. B. 1962. Flume studies of the transport in estuarine shoaling processes. Hydraulic Engineering Laboratory, University of Berkeley. California.

    Google Scholar 

  • Mellor, G. L. 1998. User's Guide for a Three-Dimensional, Primitive Equation, Numerical Ocean Model. Program in Atmospheric and Ocean Sciences, Princeton University, New Jersey.

    Google Scholar 

  • Mellor, G. L. andT. Yamada. 1974. A hierarchy of turbulence closure models for planetary boundary layers.Journal of Atmospheric Science 31:1791–1806.

    Article  Google Scholar 

  • Munk, W. H. andE. R. Anderson. 1948. Notes on a theory of the thermocline.Jouranl of Marine Research 7:276–295.

    Google Scholar 

  • Noble, M. A., W. W. Schroeder, W. J. Wiseman, Jr.,H. F. Ryan, andG. Gelfenbaum. 1996. Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama.Journal of Geophysical Research 101:25,689–25,703.

    Article  Google Scholar 

  • North, E. W. andE. D. Houde. 2001. Retention of white perch and striped bass larvae: Biological-physical interactions in Chesapeake Bay estuarine turbidity maximum.Estuaries 24: 756–769.

    Article  Google Scholar 

  • Postma, H. andK. Kalle. 1955. Die Entstehung von Trübungszonen im Unterlauf der Flüsse, speziell im Hinblick auf die Verhaltnisse in der Unterelbe.Deutsche Hydrographische Zeitschrift 8:137–144.

    Article  Google Scholar 

  • Roman, M. R., D. V. Holliday, andL. P. Sanford. 2001. Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum.Marine Ecology Progress Series 213:215–227.

    Article  Google Scholar 

  • Sanford, L. P., W. Panageotou, andJ. P. Halka. 1991. Tidal resuspension of sediments in northern Chesapeake Bay.Marine Geology 97:87–103.

    Article  Google Scholar 

  • Sanford, L. P., S. E. Suttles, andJ. P. Halka. 2001. Reconsidering the physics of the Chesapeake Bay estuarine turbidity maximum.Estuaries 24:655–669.

    Article  CAS  Google Scholar 

  • Schubel, J. R. 1968. Turbidity maximum of the northern Chesapeake Bay.Science 161:1013–1015.

    Article  CAS  Google Scholar 

  • Schubel, J. R. andD. W. Pritchard. 1986. Responses of the upper Chesapeake Bay to variations in discharge of the Susquehanna River.Estuaries 9:236–249.

    Article  CAS  Google Scholar 

  • Simenstad, C. A., C. A. Morgan, J. R. Cordell, andJ. A. Baross. 1994. Flux, passive retention, and active residence of zooplankton in Columbia River estuarine turbidity maxima, p. 473–482.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen and Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Sirois, P. andJ. J. Dodson. 2000. Influence of turbidity, food density and parasites on the ingestion and growth of larval rainbow smeltOsmerus mordax in an estuarine turbidity maximum.Marine Ecology Progress Series 193:167–179.

    Article  Google Scholar 

  • Uncles, R. J. andJ. A. Stephens. 1993. The freshwater-saltwater interface and its relationship to the turbidity maximum in the Tamar estuary, United Kingdom.Estuaries 16:126–141.

    Article  Google Scholar 

  • Wang, D. P.. 1979. Wind-driven circulation in the Chesapeake Bay, Winter, 1975.Journal of Physical Oceanography 9:564–572.

    Article  Google Scholar 

  • Wang, H. V. C. andS.-Y. Chao. 1996. Intensification of subtidal surface currents over a deep channel in the upper Chesapeake Bay.Estuarine, Coastal and Shelf Science 42:771–785.

    Article  Google Scholar 

  • Weisberg, R. H. 1976. The nontidal flow in the Providence River of Narragansett Bay: A stochastic approach to estuarine circulation.Journal of Physical Oceanography 6:721–734.

    Article  Google Scholar 

Source of Unpublished Materials

  • BITMAX program (Bio-physical Interactions in the Turbidity Maximum). website:www.BITMAX.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. W. North.

Rights and permissions

Reprints and permissions

About this article

Cite this article

North, E.W., Chao, S.Y., Sanford, L.P. et al. The influence of wind and river pulses on an estuarine turbidity maximum: Numerical studies and field observations in Chesapeake Bay. Estuaries 27, 132–146 (2004). https://doi.org/10.1007/BF02803567

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803567

Keywords

Navigation