Skip to main content
Log in

Genomic analysis of MAP kinase cascades inArabidopsis defense responses

  • Review
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The process of phosphorylation and dephosphorylation is a common mechanism of signal transduction in plants, connecting the perception of extracellular signals with the final responses to those signals. This paper will concentrate on the mitogen-activated protein (MAP) kinase pathway, one of the main phosphorylation pathways that plants use in biotic and abiotic stress resistance. It is a cascade consisting of several classes of kinases, each having a different role in signal integration and divergence. The cascade is regulated by various mechanisms, including not only transcriptional and translational regulations but also post-transcriptional regulations and protein-protein interactions. Recent detailed analysis of certain specific MAP kinase pathways has revealed the specificity of the kinases in the cascade, signal transduction patterns, identity of pathway targets, and the complexity of the cascade. Strategies in the study of phosphorylation pathways are discussed, and approaches integrating various genomics and proteomics technologies are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, and Sheen J (2002) MAP kinase signalling cascade inArabidopsis innate immunity. Nature 415: 977–983.

    Article  PubMed  CAS  Google Scholar 

  • Birrel GW, Brown JA, Wu HI, Giaever G, Chu AM, and Davis RW (2002) Transcriptional response ofSaccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci USA 99: 8778–8783.

    Article  CAS  Google Scholar 

  • Buell AR (1998)Arabidopsis: a weed leading the field of plant-pathogen interactions. Plant Physiol Biochem 36 (1–2): 177–186.

    Article  CAS  Google Scholar 

  • Caffrey DR, O'Neil LAJ, and Shields DC (1999) The evolution of the MAP Kinase pathways: Coduplication of interacting proteins leads to new signaling cascades. J Mol Evol 49: 567–582.

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, and Cho, MJ (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132: 1961–1972.

    Article  PubMed  CAS  Google Scholar 

  • Desveaux D, Marechal A, and Brisson N (2005) Whirly transcription factors: defence gene regulation and beyond. Trends Plant Sci 10: 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Du L and Chen Z (2000) Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins inArabidopsis. Plant J 24: 837–847.

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T (2005) Regulation of theArabidopsis defense transcriptome. Trends Plant Sci 10: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, and Ohme-Takagi M (2000) Arabidopsis Ethylene-Responsive Element Binding Factors Act as Transcriptional Activators or Repressors of GCC Box-Mediated Gene Expression. Plant Cell 12: 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Gutterson N, and Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7: 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, Bakkoury ME, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang C, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, and Johnston M (2002) Functional profiling of theSaccharomyces cerevisiae genome. Nature 418: 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Rogers EE, and Ausubel FM (1997) Use ofArabidopsis for genetic dissection of plant defense responses. Annu Rev Genet 31: 547–569.

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, and Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730.

    PubMed  CAS  Google Scholar 

  • Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci 2: 11–15.

    Article  Google Scholar 

  • Hirt H (2002) A new blueprint for plant pathogen resistance. Nature 20: 450–451.

    Article  CAS  Google Scholar 

  • Holub EB (2001) The arms race is ancient history inArabidopsis, the wildflower. Nature Rev Genet 2: 516–527.

    Article  CAS  PubMed  Google Scholar 

  • Huber SC, Huber JL, and McMichael Jr RW (1994) Control of plant enzyme activity by reversible protein phosphorylation. Int Rev Cytol 149: 47–98.

    Article  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, and Shinozaki K (1998a) Isolation of AtMEKK1 (A MAP kinase kinase kinase)-Interacting proteins and analysis of a MAPK kinase cascade inArabidopsis. Biochem Biophys Res Commun 253: 532–543.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Hayashida N, Seki M, and Shinozaki K (1998b) Molecular cloning and characterization of three cDNA encoding putative mitogen-activated kinase kinases (MAPKKs) inArabidopsis thaliana. DNA Res 5: 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, and Shinozaki K (2000) Various abiotic stresses rapidly activateArabidopsis MAP kinases AtMPK4 and AtMPK6. Plant J 24: 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Tena G, Henry Y, Zhang Z, Hirt H, Wilson C, Morris P, Mundy J, Innes R, and Ecker J (2002) Mitogen-activated protein kinases in plants: a new nomenclature. Trends Plant Sci 7: 301–308.

    Article  CAS  Google Scholar 

  • Jin H and Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41: 577–585.

    Article  PubMed  CAS  Google Scholar 

  • Jonak C, Okresz L, Bogre L, and Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5: 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H, and Meskiene I (2000) SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK, Plant Cell 12: 2247–2258.

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, and Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97: 11274–11279.

    Article  Google Scholar 

  • MAPK Project 2005. Functional analysis of plant MAPK cascades in stress and hormone signaling. http://genetics.mgh.harvard.edu/sheenweb/mapk_project.html.

  • Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, and Yasuda T (2002) Activation of AtMEK1, anArabidopsis mitogen-activated protein kinase kinase,in vitro andin vivo: analysis of active mutants expressed inE. coli and generation of the active form in stress response in seedlings. Plant J 29: 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, and Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress inArabidopsis thaliana. Proc Natl Acad Sci USA 93: 765–769.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, and Shinozaki K (1993) AtMPKs: a gene family of MAP kinases inArabidopsis thaliana. FEBS Lett 336: 440–444.

    Article  PubMed  CAS  Google Scholar 

  • Morrison DK and Davis RJ (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev Cell Dev Biol 19:91–118.

    Article  PubMed  CAS  Google Scholar 

  • Nakagami H, Kiegerl S, and Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem 279: 26959–26966.

    Article  PubMed  CAS  Google Scholar 

  • Nuhse TS, Peck SC, Hirt H, and Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of theArabidopsis thaliana MAPK 6. J Biol Chem 275: 7521–7526.

    Article  PubMed  CAS  Google Scholar 

  • Peck SC (2003) Early phosphorylation events in biotic stress. Curr Opin Plant Biol 6: 334–338.

    Article  PubMed  CAS  Google Scholar 

  • Peck SC, Nuhse TS, Hess D, Iglesias A, Meins F, and Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13: 1467–1475.

    Article  PubMed  CAS  Google Scholar 

  • PlantsP Database (2005) Functional genomics and plant phosphorylation. http://plantsp.genomics.purdue.edu.

  • Ren D, Yang H, and Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production inArabidopsis. J Biol Chem 277: 559–565.

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernet P, Hahlbrock K, and Somssich IE (1996) Interaction of elicitor induced DNA binding proteins with elicitor response elements in the promoters of parsley PR-1 genes. EMBO J 15: 5690–5700.

    PubMed  CAS  Google Scholar 

  • Rushton PJ and Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1: 311–315.

    Article  PubMed  CAS  Google Scholar 

  • TheArabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Wan J, Zhang S, and Stacey G (2004) Activation of a mitogen-activated protein kinase pathway inArabidopsis by chitin, Mol Plant Pathol 5: 125–135.

    Article  CAS  Google Scholar 

  • Xing T, Malik K, Martin T, and Miki BL (2001) Activation of tomato PR and wound-related genes by a mutagenized tomato MAP kinase kinase through divergent pathways. Plant Mol Biol 46: 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Xing T, Ouellet T, and Miki BL (2002) Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci 7: 224–231.

    Article  PubMed  CAS  Google Scholar 

  • Xing T, Rampitsch C, Miki BL, Mauthe W, Stebbing JA, Malik K, and Jordan M (2003) MALDI-Qq-TOF-MS and transient gene expression analysis indicated co-enhancement of β-1,3-glucanase and endochitinase by tMEK2 and the involvement of divergent pathways. Physiol Mol Plant Pathol 62: 209–217.

    Article  CAS  Google Scholar 

  • Yoshioka K (2004) Scaffold proteins in mammalian MAP kinase cascades. J Biochem 135: 657–661.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S and Klessig DF (2001) MAPK cascades on plant defense signaling. Trends Plant Sci 6: 520–526.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Liu Y, and Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J 23: 339–347.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvetkovska, M., Rampitsch, C., Bykova, N. et al. Genomic analysis of MAP kinase cascades inArabidopsis defense responses. Plant Mol Biol Rep 23, 331–343 (2005). https://doi.org/10.1007/BF02788882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788882

Keywords

Navigation