Skip to main content
Log in

Nonvanishing derivatives and normal families

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We consider the differential operators Ψ k , defined by Ψ1(y) =y and Ψ k+1(y)=yΨ k y+d/dz k (y)) fork ∈ ℕ fork∈ ℕ. We show that ifF is meromorphic in ℂ and Ψ k F has no zeros for somek≥3, and if the residues at the simple poles ofF are not positive integers, thenF has the formF(z)=((k-1)z+a)/(z 2+β z+γ) orF(z)=1/(az+β) where α, β, γ ∈ ℂ. If the residues at the simple poles ofF are bounded away from zero, then this also holds fork=2. We further show that, under suitable additional conditions, a family of meromorphic functionsF is normal if each Ψ k (F) has no zeros. These conditions are satisfied, in particular, if there exists δ>0 such that Re (Res(F, a)) <−δ for all polea of eachF in the family. Using the fact that Ψ k (f /f) =f (k)/f, we deduce in particular that iff andf (k) have no zeros for allf in some familyF of meromorphic functions, wherek≥2, then {f /f :fF} is normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Bergweiler,Normality and exceptional values of derivatives, Proc. Amer. Math. Soc.129 (2001), 121–129.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Clunie,On integral and meromorphic functions, J. London Math. Soc.37 (1962), 17–27.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Eremenko,Meromorphic functions with small ramification, Indiana Univ. Math. J42 (1994), 1193–1218.

    Article  MathSciNet  Google Scholar 

  4. G. Frank,Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Z.149 (1976), 29–36.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Frank and S. Hellerstein,On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3)53 (1986), 407–428.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Frank, W. Hennekemper and G. Polloczek,Über die Nullstellen meromorpher Funktionen and ihrer Ableitungen, Math. Ann.225 (1977), 145–154.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Frank and J. K. Langley,Pairs of linear differential polynomials, Analysis19 (1999), 173–194.

    MATH  MathSciNet  Google Scholar 

  8. W. K. Hayman,Picard values of meromorphic functions and their derivatives, Ann. Math. (2)70 (1959), 9–42.

    MathSciNet  Google Scholar 

  9. W. K. Hayman,Meromorphic Functions, Clarendon Press, Oxford, 1964.

    MATH  Google Scholar 

  10. E. L. Ince,Ordinary Differential Equations, Dover, New York, 1956.

    Google Scholar 

  11. I. Laine,Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin/New York, 1993.

    Google Scholar 

  12. J. K. Langley,Proof of a conjecture of Hayman concening f and f″, J. London Math. Soc. (2)48 (1993), 500–514.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. K. Langley,A lower bound for the number of zeros of a meromorphic function and its second derivative, Proc. Edinburgh Math. Soc.39 (1996), 171–185.

    Article  MATH  MathSciNet  Google Scholar 

  14. Xuecheng Pang,Shared values and normal families, Analysis22, (2002), 175–182.

    MATH  Google Scholar 

  15. Xuecheng Pang and L. Zalcman,Normal families and shared values, Bull. London Math. Soc.32 (2000), 325–331.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Schiff,Normal Families, Springer, New York, Berlin, Heidelberg, 1993.

    MATH  Google Scholar 

  17. W. Schwick,Normality criteria for families of meromorphic functions, J. Analyse Math.52 (1989), 241–289.

    MATH  MathSciNet  Google Scholar 

  18. D. Shea,On the frequency of multiple values of a meromorphic function of small order, Michigan Math. J.32 (1985), 109–116.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Zalcman,A heuristic principle in complex function theory, Amer. Math. Monthly82 (1975), 813–817.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Zalcman,Normal families: new perspectives, Bull. Amer. Math. Soc., N.S.35 (1998), 215–230.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author is supported by the German-Israeli Foundation for Scientific Research and Development G.I.F., G-643-117.6/1999, and INTAS-99-00089. The second author thanks the DAAD for supporting a visit to Kiel in June–July 2002. Both authors thank Günter Frank for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergweiler, W., Langley, J.K. Nonvanishing derivatives and normal families. J. Anal. Math. 91, 353–367 (2003). https://doi.org/10.1007/BF02788794

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788794

Keywords

Navigation