Skip to main content
Log in

A multi-point Schwarz-Pick Lemma

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We state and prove a general version of the Schwarz-Pick Lemma that involves more than two points in the hyperbolic plane and with appears to contain all known variations of the classical result. We give some applications to complex function theory and then discuss our result in the context of the Pick-Nevanlinna Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. V. Ahlfors,Conformal Invariants, McGraw-Hill, New York, 1973.

    MATH  Google Scholar 

  2. L. V. Ahlfors,Möbius Transformations in Several Dimensions, University of Minnesota, 1981.

  3. A. F. Beardon,On the Geometry of Discrete Groups, Graduate Texts in Mathematics 91, Springer, Berlin, 1983.

    Google Scholar 

  4. A. F. Beardon,The Schwarz-Pick Lemma for derivatives, Proc. Amer. Math. Soc.125 (1997), 3255–3256.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. F. Beardon and T. K. Carne,A strengthening of the Schwarz-Pick inequality, Amer. Math. Monthly99 (1992), 216–217.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Carathéodory,Conformal Representation, Cambridge Univ. Press, 1958.

  7. C. Carathéodory,Theory of Functions of a Complex Variable, Vol II, Chelsea, New York, 1960.

    Google Scholar 

  8. C. Craig and A. J. Macintyre,Inequalities for functions regular and bounded in a circle, Pacific J. Math.20 (1967), 449–454.

    MATH  MathSciNet  Google Scholar 

  9. J. Dieudonné,Recherches sur quelques problèmes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Ann. Sci. Ecole Norm. Sup.48 (1931), 247–358.

    MathSciNet  Google Scholar 

  10. P. L. Duren,Univalent Functions, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  11. J. B. Garnett,Bounded Analytic Functions, Academic Press, New York, 1981.

    MATH  Google Scholar 

  12. G. M. Goluzin,Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI, 1969.

    MATH  Google Scholar 

  13. G. Julia,Principles Géométriques d'Analyse, Première partie, Gauthier-Villars, Paris, 1930.

    Google Scholar 

  14. D. E. Marshall,An elementary proof of the Pick-Nevanlinna interpolation theorem, Michigan Math. J.21 (1974), 219–223.

    MathSciNet  Google Scholar 

  15. P. R. Mercer,Sharpened versions of the Schwarz Lemma, J. Math. Anal. Appl.205 (1997). 508–511.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. R. Mercer,On a strengthened Schwarz-Pick inequality, J. Math. Anal. Appl.234 (1999), 735–739.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Rhodes, Ph.D. Dissertation, Cambridge, 1996.

  18. W. Rogosinski,Zum Schwarzschen Lemma, Jahresber. Deutsch. Math.-Verein.44 (1934), 258–261.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beardon, A.F., Minda, D. A multi-point Schwarz-Pick Lemma. J. Anal. Math. 92, 81–104 (2004). https://doi.org/10.1007/BF02787757

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787757

Keywords

Navigation