Skip to main content
Log in

Improved manufacture and application of an agarose magnetizable solid-phase support

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A simple, semiautomated, nonhazardous procedure for the production of a magnetizable solid-phase support (MSPS) has been developed based on the extrusion of molten agarose-iron oxide mixtures, which enables manufacture of a range of differently sized spherical agarose-iron oxide beads. This system has enabled scale-up of an original manufacture procedure and reproducible preparation of kg quantities of MSPS suitable for biomolecular purifications. An improved protocol for the isolation of plasmid DNA directly from cell lysates using this MSPS, derivatized with diethylaminoethyl (DEAE) groups, is reported. This involves a modified alkaline lysis, followed by adsorption to and elution from the support, yielding plasmid DNA of a purity comparable with, or better than, other methods of plasmid isolation. Using the same procedure, plasmid DNA can be isolated from bacterial cell culture volumes of 1.5 mL and 100 mL with equal efficiency and purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dean, P. D. G., Johnson, W. S., and Middle, F. A. (1985),Affinity Chromatography, A Practical Approach, IRL, Oxford.

    Google Scholar 

  2. Whitesides, G. M., Kazlaukas, R. J., and Josephson, L. (1983),Trends Biotechnol 1, 145–148.

    Article  Google Scholar 

  3. Robinson, P.J., Dunnill, P., and Lilly, M. D. (1973),Biotech. Bioeng. 15, 603–606.

    Article  CAS  Google Scholar 

  4. Mosbach, K. and Anderson, L. (1977),Nature 270, 259–261.

    Article  CAS  Google Scholar 

  5. Menz, E. T., Havelick, J., Groman, E. V., and Josephson, L. (1986),Amer. Biotech. Lab. 4, 46–51.

    CAS  Google Scholar 

  6. Ugelstad, J., Stenstad, P., Kilkaas, L., Prestvik, W. S., Herje, R., Berge, A., and Hornes, E., (1994),Blood Purif. 11, 349–369.

    Article  Google Scholar 

  7. Hailing, P. J., and Dunill, P. (1980),Enzyme Microb. Technol. 2, 2–10.

    Article  Google Scholar 

  8. Hollung, P. J., Gabrielson, O. S., and Jakobsen, K. S. (1994),Nucl. Acids. Res. 22, 3261–3262.

    Article  CAS  Google Scholar 

  9. Pourfarzaneh, M., Sandy, K., Johnson, C., and Landon, J. (1982),Ligand Q. 5, 41–47.

    CAS  Google Scholar 

  10. Burns, M. A., and Graves, D. J. (1985),Biotechnol. Prog. 1, 95–103.

    CAS  Google Scholar 

  11. Jakobsen, K. S., Hagen, M., Sæbee-Larsen, S., Hollung, K., Espelund, M., and Hornes, E. (1994), inAdvances in Biomagnetic Separation, Uhlen, M., Hornes, E., and Olsvik, O., eds., Eaton, Natick, MA, pp. 61–71.

    Google Scholar 

  12. Wahlberg, J., Lundeberg, J., Hultmann, T., and Uhlen, M. (1990),Proc. Natl. Acad. USA 87, 6569–6573.

    Article  CAS  Google Scholar 

  13. Li, J. H. and Smith, L. M. (1993),Anal. Chem. 65, 1323–1328.

    Article  Google Scholar 

  14. Hawkins, T. L., O’Connor-Morin, T., Toy, A., and Santillan, C. (1994),Nucl. Acids Res. 22, 4534–4544.

    Article  Google Scholar 

  15. Bruce, I. J., Davies, M. J., Howard, K., Smethurst, D. E., and Todd, M. (1996J. Pharm. Pharmacol. 48, 147–149.

    CAS  Google Scholar 

  16. Davies, M. J., Bruce, I. J., and Smethurst, D. E. (1994), inSeparations for Biotechnology 3, Pyle, D. L., ed. RSC, Cambridge, pp. 51–158.

    Google Scholar 

  17. Schwertmann, U. and Cornell, R. M. (1991),Iron Oxides in the Laboratory, VCH, Weineim, Germany.

    Google Scholar 

  18. Ennis, M. P. and Wisdom, G. B. (1990),Appl. Biochem. Biotech. 30, 155–161.

    Google Scholar 

  19. Hjerten, S. (1964),Biochim. Biophys. Ada 79, 393–398.

    Article  CAS  Google Scholar 

  20. Bengston, S. and Philipson, L. (1964),Biochim. Biophys. Acta 79, 399–406.

    Article  Google Scholar 

  21. Arshady, R. (1991J. Chromatog. 586, 181–197.

    Article  CAS  Google Scholar 

  22. Arshady, R. (1991J. Chromatog. 586, 199–219.

    Article  CAS  Google Scholar 

  23. Kuga, S. (1988),Chromatog. Libr. 40, 157–170.

    Google Scholar 

  24. Maniatis, T. Fritsch, E. F., and Sambrook, J. (1982),Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  25. Bignell, G. R., University of Greenwich, Personal communication.

  26. Laurent, T. C. (1967),Biochim Biophys. Acta 136, 199–205.

    CAS  Google Scholar 

  27. Frigon, F. P., Leypoldt, J. K., Uyeji, S., and Henderson, L. W. (1983),Anal. Chem. 55, 1349–1354.

    Article  CAS  Google Scholar 

  28. Laurent, T. C. and Killander, J. (1964J. Chromatog. 14, 317–330.

    Article  CAS  Google Scholar 

  29. Hjerten, S. and Eriksson, K. O. (1984),Anal. Biochem. 137, 313–317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, M.J., Smethurst, D.E., Howard, K.M. et al. Improved manufacture and application of an agarose magnetizable solid-phase support. Appl Biochem Biotechnol 68, 95–112 (1997). https://doi.org/10.1007/BF02785983

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785983

Index Entries

Navigation