Skip to main content
Log in

Seagrass patch characteristics alter direct and indirect interactions in a tritrophic estuarine food web

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We used a mesocosm approach to examine howratch characteristics influenced predation and habitat selection in a tritrophic food web. Our experiments included juvenile red drum (Sciaenops ocellatus; RD), juvenile pinfish (Lagodon rhomboides; PF), and grass shrimp (Palaemonetes sp.; GS), members of a food web common in seagrass meadows of the northern Gulf of Mexico. We added an additional level of complexity to the experiment by including a predator that could feed at two different trophic levels. RD were top predators, PF were both prey items for RD and predators of GS, and GS were prey for RD and PF. We used 4 different artificial seagrass habitats that varied by size (0.049 and 0.203 m2) and shape (circular and stellate) to control for covariation between patch size and seagrass density. Predation on GS was measured in each habitat when PF, RD, and PF+RD were present, and predation on PF was measured when RD and RD+GS were present. Habitat selection by each of these 3 species was measured individually and in the presence of every other combination of the 3 species. Neither predation nor habitat selection were consistently influenced by patch characteristics (size, shape, or perimeter: area ratios) or the number of trophic levels. For GS, there was a significant negative relationship between patch size and predation rates in the GS+PF+RD treatment. Habitat selection by GS without the threat of predation suggested a preference for smaller habitats, but when in the presences of RD or RD+PF, GS preferred larger habitats. In predation experiments, PF predation by RD showed no significant relationships with patch characteristics or trophic structure. For our habitat selection experiments, PF preference was for larger habitats in the PF only and GS+PF+RD treatments. There were no significant relationships between patch size, shape, or trophic structure and RD habitat selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abrams, P. A. 1995. Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities.American Naturalist 146:112–134.

    Article  Google Scholar 

  • Adams, A. J., J. V. Locascio, andB. D. Robbins. 2004. Microhabitat use by a post-settlement stage estuarine fish: Evidence from relative abundance and predation among habitats.Journal of Experimental Marine Biology and Ecology 299:17–33.

    Article  Google Scholar 

  • Andren, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review.Oikos 71:355–366.

    Article  Google Scholar 

  • Bartholomew, A., R. J. Diaz, andG. Cicchetti. 2000. New dimensionless indices of structural habitat complexity: Predicted and actual effects on a predators foraging success.Marine Ecology Progress Series 206:45–58.

    Article  Google Scholar 

  • Bauer, R. T. 1989. Continuous reproduction and episodic recruitment in nine shrimp species inhabiting a tropical seagrass meadow.Journal of Experimental Marine Biology and Ecology 127:175–187.

    Article  Google Scholar 

  • Bell, S. S., R. A. Brooks, B. D. Robbins, M. S. Fonseca, andM. O. Hall. 2001. Faunal response to fragmentation in seagrass habitats: Implications for seagrass conservation.Biological Conservation 100:115–123.

    Article  Google Scholar 

  • Bell, J. D., M. Westoby, andA. S. Steffe. 1987. Fish larvae settling in seagrass: Do they discriminate between beds of different leaf density?Journal of Experimental Marine Biology and Ecology 111:133–144.

    Article  Google Scholar 

  • Bologna, P. A. X. 1998. The effects of seagrass habitat architecture on associated fauna. Ph.D. Dissertation, University of South Alabama, Mobile, Alabama.

    Google Scholar 

  • Bologna, P. A. X. andK. L. Heck, Jr. 1999. Differential predation and growth rates of bay scallops within a seagrass habitat.Journal of Experimental Marine Biology and Ecology 239:299–314.

    Article  Google Scholar 

  • Bologna, P. A. X. andK. L. Heck, Jr. 2000. Impacts of seagrass habitat architecture on bivalve settlement.Estuaries 23:449–457.

    Article  Google Scholar 

  • Boström, C. 2001. Ecology of seagrass meadows in the Baltic Sea. Ph.D. Dissertation, Abo Akademi University, Abo, Finland.

    Google Scholar 

  • Caley, M. J., K. A. Buckley, andG. P. Jones. 2001. Separating ecological effects of habitat fragmentation, degradation, and loss on coral commensals.Ecology 82:3435–3448.

    Article  Google Scholar 

  • Coen, L. D., K. L. Heck, Jr., andL. G. Abele. 1981. Experiments on competition and predation among shrimps of seagrass meadows.Ecology 62:1484–1493.

    Article  Google Scholar 

  • Crowder, L. B. andW. E. Cooper. 1979. Structural complexity and fish-prey interactions in ponds: A point of view, p. 2–10.In D. L. Johnson and R. A. Stein (eds.), Response of Fish to Habitat Structure in Standing Water. North Central Division American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Dill, L. M., M. R. Heithaus, andC. J. Walters. 2003. Behaviorally mediated indirect interactions in marine communities and their conservation implications.Ecology 84:1151–1157.

    Article  Google Scholar 

  • Duarte, C. M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes.Ophelia 41:37–112.

    Google Scholar 

  • Durako, M. J. 1994. Seagrass die-off in Florida Bay (USA): Changes in shoot demographic characteristics and population dynamics inThalassia testudinum.Marine Ecology Progress Series 110:59–66.

    Article  Google Scholar 

  • Eckrich, C. E. andJ. G. Holmquist. 2000. Trampling in a seagrass assemblage: Direct effects, response of associated fauna, and the role of substrate characteristics.Marine Ecology Progress Series 201:199–209.

    Article  Google Scholar 

  • Eggleston, D. B., W. E. Elis, L. L. Etherington, C. P. Dahlgren, andM. H. Posey. 1999. Organism responses to habitat fragmentation and diversity: Habitat colonization by estuarine macrofauna.Journal of Experimental Marine Biology and Ecology 236:107–132.

    Article  Google Scholar 

  • Eggleston, D. B., L. L. Etherington, andW. E. Elis. 1998. Organism response to habitat patchiness: Species and habitat-dependent recruitment of decapod crustaceans.Journal of Experimental Marine Biology and Ecology 223:111–132.

    Article  Google Scholar 

  • Fischer, M. 2000. Species loss after habitat fragmentation.Trends in Ecology and Evolution 15:396.

    Article  Google Scholar 

  • Fonseca, M. S. 1993. A Guide to Planting Seagrasses in the Gulf of Mexico. Texas A&M University Sea Grant College Program TAMU-SG-94-601, College Station, Texas.

  • Fonseca, M. S. andS. S. Bell. 1998. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA.Marine Ecology Progress Series 171:109–121.

    Article  Google Scholar 

  • Fonseca, M. S., J. S. Fisher, J. C. Zieman, andG. W. Thayer. 1982. Influence of the seagrass,Zostera marina L., on current flow.Estuarine and Coastal Shelf Science 15:351–364.

    Article  Google Scholar 

  • Fonseca, M. S., W. J. Kenworthy, andG. W. Thayer. 1998. Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. National Oceanic and Atmospheric Administration, Coastal Ocean Program Office, Silver Spring, Maryland.

    Google Scholar 

  • Grabowski, J. H. 2004. Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs.Ecology 85:995–1004.

    Article  Google Scholar 

  • Grabowski, J. H. andD. L. Kimbro. 2005. Predator-avoidance behavior extends trophic cascades to refuge habitats.Ecology 86:1312–1320.

    Article  Google Scholar 

  • Healey, D. andK. A. Hovel. 2006. Seagrass bed patchiness: Effects on epifaunal communities in San Diego Bay, USA.Journal of Experimental Marine Biology and Ecology 313:155–174.

    Article  Google Scholar 

  • Heck, Jr.,K. L., G. Hays, andR. J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows.Marine Ecology Progress Series 253:123–136.

    Article  Google Scholar 

  • Heck, Jr.,K. L. andR. J. Orth. 1980. Seagrass habitats: The roles of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages, p. 449–464.In V. S. Kennedy (ed.), Estuarine Perspectives. Academic Press, New York.

    Google Scholar 

  • Heck, Jr.,K. L. andR. J. Orth. 2006. Predation in seagrass meadows, p. 537–550.In A. W. Larkum, R. J. Orth, and C. M. Duarte (eds.), Seagrasses: Biology, Ecology, and their Conservation. Kluwer, Amsterdam, The Netherlands.

    Google Scholar 

  • Heck, Jr.,K. L., J. R. Pennock, J. F. Valentine, L. D. Coen, andS. A. Sklenar. 2000. Effects of nutrient enrichment and small predator density on seagrass ecosystems: An experimental assessment.Limnology and Oceanography 45:1041–1057.

    Article  CAS  Google Scholar 

  • Hoese, H. D. andR. H. Moore. 1977. Fishes of the Gulf of Mexico; Texas, Louisiana, and Adjacent Waters, 2nd edition. Texas A&M University Press, College Station, Texas.

    Google Scholar 

  • Holt, S. A., C. L. Kitting, andC. R. Arnold. 1983. Distribution of young red drums among different sea-grass meadows.Transactions of the American Fisheries Society 112:267–271.

    Article  Google Scholar 

  • Hovel, K. A. 2003. Habitat fragmentation in marine landscapes: Relative effects of cover and configuration on juvenile crab survival in California and North Carolina seagrass beds.Biological Conservation 110:401–412.

    Article  Google Scholar 

  • Hovel, K. A., M. S. Fonseca, D. L. Myer, W. J. Kenworthy, andP. E. Whitfield. 2002. Effects of seagrass landscape structure, structural complexity and hydrodynamic regime on macrofaunal densities in North Carolina seagrass beds.Marine Ecology Progress Series 243:11–24.

    Article  Google Scholar 

  • Hovel, K. A. andR. N. Lipcius. 2001. Habitat fragmentation in a seagrass landscape: Patch size and complexity control blue crab survival,Ecology 82:1814–1829.

    Google Scholar 

  • Hovel, K. A. andR. N. Lipcius. 2002. Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance.Journal of Experimental Marine Biology and Ecology 271:75–98.

    Article  Google Scholar 

  • Ikeda, K. andF. Nakasuji. 2002. Spatial structure-mediated indirect effects of an aquatic plant,Trapa japonica, on interaction between a leaf beetle,Galerucella nipponensis, and a water strider,Gerris nepalensis.Population Ecology 44:41–47.

    Article  Google Scholar 

  • Irlandi, E. A. 1994. Large-and small-scale effects of habitat structure on rates of predation: How percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve.Oecologia 98:176–183.

    Article  Google Scholar 

  • Irlandi, E. A. 1996. The effect of seagrass patch size and energy regime on growth of an infaunal bivalve.Journal of Marine Research 54:1–26.

    Article  Google Scholar 

  • Irlandi, E. A. 1997. Seagrass patch size and survivorship of an infaunal bivalve.Oikos 78:511–518.

    Article  Google Scholar 

  • Irlandi, E. A., W. G. Ambrose, Jr., andB. A. Orlando. 1995. Landscape ecology and the marine environment: How spatial configuration of seagrass habitat influences growth and survival of the bay scallop.Oikos 72:307–313.

    Article  Google Scholar 

  • Irlandi, E. A., B. A. Orlando, andW. G. Ambrose, Jr. 1999. Influence of seagrass habitat patch size on growth and survival of juvenile bay scallops,Argopecten irradians concentricus (Say).Journal of Experimental Marine Biology and Ecology 235:21–43.

    Article  Google Scholar 

  • Johnson, M. W. andK. L. J. Heck. 2003. The Role of Habitat Fragmentation in Seagrass Ecosystems in the Northern Gulf of Mexico. Environmental Protection Agency, Atlanta, Georgia.

    Google Scholar 

  • Johnson, M. W. andK. L. Heck, Jr. 2006. Effects of habitat fragmentation per se on decapods and fishes inhabiting seagrass meadows in the northern Gulf of Mexico.Marine Ecology Progress Series 306:233–246.

    Article  Google Scholar 

  • Jordan, F., M. Bartolini, C. Nelson, P. E. Patterson, andH. L. Soulen. 1997. Risk of predation affects habitat selection by the pinfishLagodon rhomboides (Linnaeus).Journal of Experimental Marine Biology and Ecology 208:45–56.

    Article  Google Scholar 

  • Keough, M. J. 1984. Effects of patch size on the abundance of sessile marine invertebrates.Ecology 65:423–437.

    Article  Google Scholar 

  • Kneib, R. T. andC. E. H. Scheele. 2000. Does tethering of mobile prey measure relative predation potential? An empirical test using mummichogs and grass shrimp.Marine Ecology Progress Series 198:181–190.

    Article  Google Scholar 

  • Koch, E. W. andG. Gust. 1999. Water flow in tide- and wave-dominated beds of the seagrassThalassia testudinum.Marine Ecology Progress Series 184:63–72.

    Article  Google Scholar 

  • Luttbec, B., L. Rowe, andM. Mangel. 2003. Prey state and experimental design affect relative size of trait- and density-mediated indirect effects.Ecology 84:1140–1150.

    Article  Google Scholar 

  • Magoulick, D. D. 2004. Effects of predation risk on habitat selection by water column fish, benthic fish and crayfish in stream pools.Hydrobiologia 527:209–221.

    Article  Google Scholar 

  • McCarthy, T. M. andB. F. Dickey. 2002. Chemically mediated effects of injured prey on behavior of both prey and predators.Behaviour 139:585–602.

    Article  Google Scholar 

  • McIntosh, A. R. andG. R. Townsend. 1996. Interactions between fish, grazing invertebrates and algae in a New Zealand stream: A trophic cascade mediated by fish-induced changes to grazer behaviour.Oecologia 108:174–181.

    Article  Google Scholar 

  • McNeill, S. E. andP. G. Fairweather. 1993. Single large or several small marine reserves? An experimental approach with seagrass fauna.Journal of Biogeography 20:429–440.

    Article  Google Scholar 

  • Miller, T. E. andW. C. Kerfoot. 1987. Redefining indirect effects, p. 33–37.In W. C. Kerfoot and A. Sih (eds.), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Moksnes, P. O., R. N. Lipcius, L. Pihl, andJ. Van Montfrans. 1997. Cannibal-prey dynamics in young juveniles and postlarvae of the blue crab.Journal of Experimental Marine Biology and Ecology 215:157–187.

    Article  Google Scholar 

  • Peacor, S. D. andE. E. Werner. 2001. The contribution of traitmediated indirect effects to the net effects of a predator.Proceedings of the National Academy of Sciences, USA 98:3904–3908.

    Article  CAS  Google Scholar 

  • Peterson, C. H. andP. E. Renaud. 1989. Analysis of feeding preference experiments.Oceologica 80:82–86.

    Article  Google Scholar 

  • Ribas, C. R., T.G. Sobrinho, J. H. Schoereder, C. F. Sperber, C. Lopes-Andrade, andS. M. Soares. 2005. How large is large enough for insects? Forest fragmentation effects at three spatial scales.Acta Oecologica 27:21–41.

    Article  Google Scholar 

  • Rooker, J. R., G. J. Holt, andS. A. Holt. 1997. Condition of larval and juvenile red drum (Sciaenops ocellatus) from estuarine nursery habitats.Marine Biology 127:387–394.

    Article  Google Scholar 

  • Schumaker, N. H. 1996. Using landscape indices to predict habitat connectivity.Ecology 77:1210–1225.

    Article  Google Scholar 

  • Seddon, S., R. M. Connolly, andK. S. Edyvane. 2000. Large-scale seagrass dieback in northern Spencer Gulf, South Australia.Aquatic Botany 66:297–310.

    Article  Google Scholar 

  • Sheaves, M. 2001. Are there really few piscivorous fishes in shallow estuarine habitats?Marine Ecology Progress Series 222:279–290.

    Article  Google Scholar 

  • Short, F. T. andS. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses.Environmental Conservation 23:17–27.

    Article  Google Scholar 

  • Skelly, D. K. 2002. Experimental venue and estimation of interaction strength.Ecology 83:2097–2101.

    Google Scholar 

  • Spitzer, P. M., J. Mattila, andK. L. Heck, Jr. 2000. The effects of vegetation density on the relative growth rates of juvenile pinfish,Lagodon rhomboides (Linneaus), in Big Lagoon, Florida.Journal of Experimental Marine Biology and Ecology 244:67–86.

    Article  Google Scholar 

  • Stoner, A. W. 1980. Feeding ecology ofLagodon rhomboides (Pisces: Sparidae): Variation and functional responses.Fishery Bulletin 78:337–352.

    Google Scholar 

  • Stunz, G. W. andT. J. Minello. 2001. Habitat-related predation on juvenile wild-caught and hatchery-reared red drumSciaenops ocellatus (Linnaeus).Journal of Experimental Marine Biology and Ecology 260:13–25.

    Article  Google Scholar 

  • Stunz, G. W., T. Minello, andP. Levin. 1999. Recruitment patterns, growth, and predation of red drum (Sciaenops ocellatus) in various Galveston Bay habitats.Gulf Research Reports 11:77.

    Google Scholar 

  • Stutes, J. P. 2000. The relative importance of vertebrate and invertebrate grazing on seagrass epiphytes in the northern Gulf of Mexico: An experimental assessment. M.S. Thesis, University of South Alabama, Mobile, Alabama.

    Google Scholar 

  • Swingle, W. E. 1990. Status of the commercial and recreational fishery, p. 22–24.In G. W. Chamberlin, R. J. Miget, and M. G. Haby (eds.) Red Drum Aquaculture. Texas A&M Sea Grant Program, College Station, Texas.

    Google Scholar 

  • Trussell, G. C., P. J. Ewanchuk, M. D. Bertness, andB. R. Silliman. 2004. Trophic cascades in rocky shore tide pools: Distinguishing lethal and nonlethal effects.Oecologia 139:427–432.

    Article  Google Scholar 

  • Vance Chalcraft, H. D., D. A. Soluk, andN. Ozburn. 2004. Is prey predation risk influenced more by increasing predator density or predator species richness in stream enclosures?Oecologia 139:117–122.

    Article  Google Scholar 

  • Werner, E. E. andS. D. Peacor. 2003. A review of trait-mediated indirect interactions in ecological communities.Ecology 84: 1083–1100.

    Article  Google Scholar 

  • Williams, A. B. 1984. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida. Smithsonian Institution Press, Washington D.C.

    Google Scholar 

Source of Unpublished Materials

  • Geraldi, N. unpublished data. Dauphin Island Sea Lab, 101 Bienville Blvd., Dauphin Island, Alabama 36528.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.W., Heck, K.L. Seagrass patch characteristics alter direct and indirect interactions in a tritrophic estuarine food web. Estuaries and Coasts: J ERF 29, 499–510 (2006). https://doi.org/10.1007/BF02784997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784997

Keywords

Navigation