Skip to main content
Log in

Long-term effects of iron: Zinc interactions on growth in rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The influence of iron (Fe) on the bioavailability and functional status of zinc (Zn) was studied in young rats using metabolic balances and tissue dosages, which were compared to growth. Diets supplied adequate intakes of Fe (45 and 300 mg/kg diet) and Zn (14 and 45 mg/kg) for 2 mo. Two metabolic balance determinations were performed that were correlated for Zn and Fe during the first and the last weeks of the study.

A significant effect of Fe supply, but not of Zn was displayed on Fe absorption; both Fe and Zn diet concentrations had a significant influence on Zn absorption.

Fe and Zn organ contents were significantly correlated with the amount absorbed during the two metabolic balances. There was a positive correlation between liver and muscle Fe and Fe absorption, and Fe absorption and muscle Zn, as well as a negative one with liver Zn; a positive correlation was displayed between Zn absorption and Zn organ content. No correlation was found between Zn absorption and Fe tissue content.

Growth was correlated with Zn, but not with Fe absorption during both balances. A positive correlation was displayed between growth and Zn liver content, and a negative one with Fe liver content. Care must be taken to give growing subjects balanced diets or supplementation, since the negative interactions between these trace elements are likely to persist as long as the diet is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Brandao-Neto, V. Stefan, B. B. Mendonça, W. Bloise, and A. V. B. Castro, The essential role of zinc in growth,Nutr. Res. 15, 335–358 (1995).

    Article  CAS  Google Scholar 

  2. N. J. Meadows, S. L. Grainger, W. Ruse, P. W. N. Keeling, and R. P. H. Thompson, Oral iron and the bioavailability of zinc,Br. Med. J. 287, 1013–1014(1983).

    CAS  Google Scholar 

  3. N. W. Solomons, O. Pineda, F. Viteri, and H. H. Sandstead, Studies on the bioavailability of zinc in humans: mechanism of the intestinal interaction of nonheme iron and zinc,J. Nutr. 113, 337–349 (1983).

    PubMed  CAS  Google Scholar 

  4. L. S. Valberg, P. R. Flanagan, and M. J. Chamberlain, Effects of iron, tin, and copper on zinc absorption in humans,Am. J. Clin. Nutr. 40, 536–541 (1984).

    PubMed  CAS  Google Scholar 

  5. B. Sandström, L. Davidsson, A. Cderblad, and B. Lönnerdal, Oral iron, dietary ligands and zinc absorption,J. Nutr. 115, 411–414 (1985).

    PubMed  Google Scholar 

  6. R. W. Crofton, D. Gvozdanovic, S. Gvozdanovic, C. C. Khin, P. W. Brunt, N. A. G. Mowat, et al., Inorganic zinc and the intestinal absorption of ferrous iron,Am. J. Clin. Nutr. 50, 141–144 (1989).

    PubMed  CAS  Google Scholar 

  7. L. Rossander-Hultén, M. Brune, B. Sandström, B. Lönnerdal, and L. Hallberg, Competitive inhibition of iron absorption by manganese and zinc in humans,Am. J. Clin. Nutr. 54, 152–156 (1991).

    PubMed  Google Scholar 

  8. D. L. Hamilton, J. E. C. Bellamy, J. D. Valberg, and L. S. Valberg, Zinc, cadmium, and iron interactions during intestinal absorption in iron-deficient mice,Can. J. Physiol. Pharmacol. 56, 384–389 (1978).

    PubMed  CAS  Google Scholar 

  9. P. R. Flanagan, J. Haist, and L. S. Valberg, Comparative effects of iron deficiency induced by bleeding and a low-iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium,J. Nutr. 110, 1754–1763 (1980).

    PubMed  CAS  Google Scholar 

  10. M. L. Storey and J. L. Greger, Iron, zinc and copper interactions: chronic versus acute responses of rats,J. Nutr. 117, 1434–1442 (1987).

    PubMed  CAS  Google Scholar 

  11. S. J. Fairweather-Tait and S. Southon, Studies of iron:zinc interactions in adult rats and the effect of iron fortification of two commercial infant weaning products on iron and zinc status of weanling rats,J. Nutr. 119, 599–606 (1989).

    PubMed  CAS  Google Scholar 

  12. F. Haschke, E. E. Ziegler, B. B. Edwards, and S. J. Fomon, Effect of iron fortification of infant formula on trace mineral absorption,J. Pediatr. Gastroenterol. Nutr. 5, 768–773 (1986).

    PubMed  CAS  Google Scholar 

  13. L. Davidsson, A. Almgren, B. Sandström, and R. F. Hurrell, Zinc absorption in adult humans: the effect of iron fortification,Br. J. Nutr. 74, 417–425 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. S. Polberger, M. P. Fletcher, T. W. Graham, K. Vruwink, M. E. Gershwin, and B. Lön-nerdal, Effect of infant formula zinc and iron level on zinc absorption, zinc status, and immune function in infant rhesus monkeys,J. Pediatr. Gastroenterol. Nutr. 22, 134–143 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. S. J. Fairweather-Tait, S. G. Wharf, and T. E. Fox, Zinc absorption in infants fed ironfortified weaning food,Am. J. Clin. Nutr. 62, 785–789 (1995).

    PubMed  CAS  Google Scholar 

  16. L. Davidsson, P. Kastenmayer, and R. F. Hurrell, Sodium iron EDTA [NaFe(II)EDTA] as a food fortificant: the effect on the absorption and retention of zinc and calcium in women,Am. J. Clin. Nutr. 60, 231–237 (1994).

    PubMed  CAS  Google Scholar 

  17. B. Lönnerdal and B. Sandström, Factors influencing the uptake of metal ions from the digestive tract, inHandbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Medicine, vol. 2, G. Berthon, ed., Marcel Dekker, New York, pp. 331–337 (1995).

    Google Scholar 

  18. R. P. Hamilton, M. R. S. Fox, S.-H. Tao, and B. E. Fry, Zinc-induced anemia in young japanese quail ameliorated by supplemental copper and iron,Nutr. Res. 1, 589–599 (1981).

    Article  CAS  Google Scholar 

  19. B. Lönnerdal, L. Davidsson, and C. L. Keen, Effect of varying dietary iron and zinc levels on tissue concentrations in the rat,Nutr. Res. Suppl. 1, 277-280 (1985).

    Google Scholar 

  20. M. K. Yadrick, M. A. Kenney, and E. A. Winterfeldt, Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females,Am. J. Clin. Nutr. 49, 145–150 (1989).

    PubMed  CAS  Google Scholar 

  21. M. Ruz, K. R. Cavan, W. J. Bettger, P. W. F. Fischer, and R. S. Gibson, Indices of iron and copper status during experimentally induced, marginal zinc deficiency in humans,Biol. Trace Element Res. 34, 197–212 (1992).

    Article  CAS  Google Scholar 

  22. D. L. Bloxam, N. R. Williams, R. J. D. Waskett, P. M. Pattinson-Green, Y. Morarji, and S. Stewart, Maternal zinc during oral iron supplementation in pregnancy: a preliminary study,Clin. Sci. 76, 59–65 (1989).

    PubMed  CAS  Google Scholar 

  23. E. B. Dawson, J. Albers, and W. J. McGanity, Serum zinc changes due to iron supplementation in teen-age pregnancy,Am. J. Clin. Nutr. 50, 848–852 (1989).

    PubMed  CAS  Google Scholar 

  24. K. M. Hambidge, N. F. Krebs, M. A. Jacobs, A. Favier, L. Guyette, and D. N. Ikle, Zinc nutritional status during pregnancy: a longitudinal study,Am. J. Clin. Nutr. 37, 429–142 (1983).

    PubMed  CAS  Google Scholar 

  25. W. J. Craig, L. Balbach, S. Harris, and N. Vyhmeister, Plasma zinc and copper levels of infants fed different milk formulas,J. Am. Coll. Nutr. 3, 183–186 (1984).

    PubMed  CAS  Google Scholar 

  26. National Research Council, Nutrient requirements of the rat, inNutrient Requirements of the Laboratory Animals, 4th rev. ed., National Academy Press, Washington, DC, pp. 11–79 (1995).

    Google Scholar 

  27. B. Sandström, Bioavailability of zinc,Eur. J. Clin. Nutr. 51 (Suppl1), S17-S19 (1997).

    PubMed  Google Scholar 

  28. D. McMaster, T. R. J. Lappin, H. L. Halliday, and C. C. Patterson, Zinc bioavailability and infant formula,Am. J. Clin. Nutr. 41, 1067 (1985).

    PubMed  CAS  Google Scholar 

  29. G. P. Salvioli, G. Faldella, R. Alessandroni, M. Lanari, and L. Benfenati, Plasma zinc concentrations in iron supplemented low birthweight infants,Arch. Dis. Child. 61, 346–348 (1986).

    PubMed  CAS  Google Scholar 

  30. C. K. Bradley, L. Hillman, A. R. Sherman, D. Leedy, and A. Cordano, Evaluation of two iron-fortified, milk-based formulas during infancy,Pediatrics 91, 908–914 (1993).

    PubMed  CAS  Google Scholar 

  31. J. P. Van Wouwe, Clinical and laboratory assessment of zinc deficiency in Dutch children. A review,Biol. Trace Element Res. 49, 211–225 (1995).

    Article  Google Scholar 

  32. P. A. Walravens, N. F. Krebs, and K. M. Hambidge, Linear growth of low income preschool children receiving a zinc supplement,Am. J. Clin. Nutr. 38, 195–201 (1983).

    PubMed  CAS  Google Scholar 

  33. C. Castillo-Duràn, H. Garcia, P. Venegas, I. Torrealba, E. Panteon, N. Concha, et al., Zinc supplementation increases growth velocity of male children and adolescents with short stature,Acta Paediatr. 83, 833–837 (1994).

    PubMed  Google Scholar 

  34. R. Mokni, A. Chakar, F. Bleiberg-Daniel, J. L. Mahu, P. A. Walravens, P. Chappuis, et al., Decreased serum levels of nutritional biochemical indices in healthy children with marginally delayed physical growth,Acta Paediatr. 82, 539–543 (1993).

    PubMed  CAS  Google Scholar 

  35. P. Idjradinata, W. E. Watkins, and E. Pollitt, Adverse effects of iron supplementation on weight gain of iron replete-young children,Lancet 343, 1252–1254 (1994).

    Article  PubMed  CAS  Google Scholar 

  36. N. W. Solomons and M. Ruz, Zinc and iron interaction: concepts and perspectives in the developing world,Nutr. Res. 17, 177–185 (1997).

    Article  Google Scholar 

  37. M. E. Conrad, J. N. Umbreit, and E. G. Moore, A role for mucin in the absorption of inorganic iron and other metal cations,Gastroenterologe 100, 129–136 (1991).

    CAS  Google Scholar 

  38. E. M. Wien, R. P. Glahn, and D. R. Van Campen, Ferrous iron uptake by rat duodenal brush border membrane vesicles: effects of dietary iron level and competing minerals (Zn + 2, Mn + 2, and Ca + 2),J. Nutr. Biochem. 5, 571–577 (1994).

    Article  CAS  Google Scholar 

  39. W. P. Goddard, K. Coupland, J. A. Smith, and R. G. Long, Iron uptake by isolated human enterocyte suspensions in vitro is dependent on body iron stores and inhibited by other metal cations,J. Nutr. 127, 177–183 (1997).

    PubMed  CAS  Google Scholar 

  40. H. J. Steinhardt and S. A. Adibi, Interaction between transport of zinc and other solutes in human intestine,Am. J. Physiol. 247, G176-G182 (1984).

    PubMed  CAS  Google Scholar 

  41. M. E. Conrad, J. M. Umbreit, R.D.A. Peterson, E.G. Moore, and K.P. Harper, Function of integrin in duodenal mucosal uptake of iron,Blood 81, 517–521(1993).

    PubMed  CAS  Google Scholar 

  42. D.-Y. Lee, A. S. Prasad, C. Hydrick-Adair, G. Brewer, and P. E. Johnson, Homeostasis of zinc in marginal human zinc deficiency: role of absorption and endogenous excretion of zinc,J. Lab. Clin. Med. 122, 549–556 (1993).

    PubMed  CAS  Google Scholar 

  43. D. Van Campen and W. A. House, Effect of a low protein diet on retention of an oral dose of 65Zn and on tissue concentrations of zinc, iron, and copper in rats,J. Nutr. 104, 84–90 (1974).

    PubMed  Google Scholar 

  44. T. Larsen and B. Sandström, Tissues and organs as indicators of intestinal absorption of minerals and trace elements, evaluated in rats,Biol. Trace Element Res. 35, 185–199 (1992).

    CAS  Google Scholar 

  45. D. Dicks, A. Rojhani, and Z. T. Cossack, The effect of growth hormone treatment on growth in zinc deficient rats,Nutr. Res. 13, 701–713 (1993).

    Article  CAS  Google Scholar 

  46. S. R. Glore, V. L. Orth, A. W. Knehans, and J. W. Erdman, Efficacy of dietary zinc supplementation on catch-up growth after protein malnutrition,J. Nutr. Biochem. 4, 281–285 (1993).

    Article  CAS  Google Scholar 

  47. J. H. Y. Park, C. J. Grandjean, D. L. Antonson, and J. A. Vanderhoof, Effects of isolated zinc deficiency on the composition of skeletal muscle, liver and bone during growth in rats,J. Nutr. 116, 610–617 (1986).

    PubMed  CAS  Google Scholar 

  48. B. G. Shah and B. Belonje, Marginal or excess dietary iron and rat tissue trace element levels,Trace Element Med. 8, 143–148 (1991).

    CAS  Google Scholar 

  49. K. F. Michaelsen, G. Samuelson, T. W. Graham, and B. Lönnerdal, Zinc intake, zinc status and growth in a longitudinal study of healthy Danish infants,Acta Paediatr. 83, 1115–1121 (1994).

    PubMed  CAS  Google Scholar 

  50. L. Salmenperä, J. Perheentupa, V. Näntö, and M. A. Siimes, Low zinc intake during exclusive breast-feeding does not impair growth,J. Pediatr. Gastroenterol. Nutr. 18, 361–370 (1994).

    Article  PubMed  Google Scholar 

  51. T. Tamura and R. L. Goldenberg, Zinc nutriture and pregnancy outcome,Nutr. Res. 16, 139–181 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouglé, D., Isfaoun, A., Bureau, F. et al. Long-term effects of iron: Zinc interactions on growth in rats. Biol Trace Elem Res 67, 37–48 (1999). https://doi.org/10.1007/BF02784273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784273

Index entries

Navigation