Skip to main content
Log in

Comparative studies of zinc metabolism in cultured chinese hamster cells with differing metallothionein-induction capacities

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous work in our laboratory led to the isolation of a cadmium (Cd)-resistant variant (Cdr2C10) of the line CHO Chinese Hamster cell having a 10-fold greater resistance to the cytotoxic action of Cd2+ compared with the CHO cell. This resistance was attributed to an increased capacity of the Cd2+-resistant Cdr2C10 subline to induce synthesis of the Cd2+- and Zn2+-binding protein(s), metallothionein(s) (MT). Evidence that Cd2+ behaves as an analog of the essential trace metal, Zn2+, especially as an inducer of MT synthesis, suggested that the Cdr and CHO cell types could be employed to investigate cellular Zn2+ metabolism. In the present study, measurements were made to compare CHO and Cdr cell types for (a) growth as a function of the level of ZnCl2 added to the culture medium, (b) uptake and subcellular distribution of Zn2+, and (c) capacity to induce MT synthesis. The results of these measurements indicated that (a) both CHO and Cdr cell types grew normally (T d≊16–18 h) during exposures to Zn2+ at levels up to 100 μM added to the growth medium, but displayed abrupt growth inhibition at higher Zn2+ levels, (b) Cdr cells incorporate fourfold more Zn2+ during a 24-h exposure to the maximal subtoxic level of Zn2+ and (c) the CHO cell lacks the capacity to induce MT synethesis while the Cdr cell is proficient in this response during exposure to the maximal subtoxic Zn2+ level. These findings suggest that (a) the CHO and Cdr cell systems will be useful in further studies of cellular Zn2+ metabolism, especially in comparisons of Zn2+ metabolism in the presence and absence of induction of the Zn2+-sequestering MT and (b) a relationship exists between cellular capacity to induce MT synthesis and capacity for cellular Zn2+ uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Todd, C. A. Elvehjem, and E. B. Hart,Am. J. Physiol. 107 146 (1934).

    CAS  Google Scholar 

  2. B. L. Vallee, inAspects Biological of Inorganic Chemistry, A. W. Addison, W. R. Cullen, D. Dolphin, and B. R. James, eds., Wiley, New York, NY, 1977, pp. 37–70.

    Google Scholar 

  3. A. S. Prasad and D. Oberleas, eds.,Trace Elements in Human Health and Disease: Zinc and Copper, vol. 1, Academic Press, New York, 1976.

    Google Scholar 

  4. R. J. Cousins,Am. J. Clin. Nutr. 32, 339 (1979).

    PubMed  CAS  Google Scholar 

  5. A. S. Prasad,Ann. Rev. Pharmacol. Toxicol. 20, 393 (1979).

    Article  Google Scholar 

  6. R. P. Cox,Mol. Pharmacol. 4, 510 (1968).

    PubMed  CAS  Google Scholar 

  7. R. P. Cox,Science 165 196 (1969).

    Article  PubMed  CAS  Google Scholar 

  8. R. P. Cox and A. Ruckenstein,J. Cell. Physiol. 77, 71 (1971).

    Article  PubMed  CAS  Google Scholar 

  9. M. L. Failla and R. J. Cousins,Biochim. Biophys. Acta 538, 435 (1978).

    PubMed  CAS  Google Scholar 

  10. M. L. Failla and R. J. Cousins,Biochim. Biophys. Acta 543, 293 (1978).

    PubMed  CAS  Google Scholar 

  11. C. J. Rudd and H. R. Herschman,Toxicol. Appl. Pharmacol. 47, 273 (1979).

    Article  PubMed  CAS  Google Scholar 

  12. C. E. Hildebrand, R. A. Tobey, E. W. Campbell, and M. D. Enger,Exptl. Cell Res,124, 237–246 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. B. L. Vallee and D. D. Ulmer,Ann. Rev. Biochim. 41, 91 (1972).

    Article  CAS  Google Scholar 

  14. F. Kao and T. T. Puck,Genetics 79, 343 (1975).

    PubMed  Google Scholar 

  15. E. H. Y. Chu and S. S. Powell, inAdvances in Human Genetics, H. Harns and K. Hirschhorn, eds., vol. 7, 1976, p. 189.

  16. J. P. O'Neill, P. A. Brimer, R. Machanoff, G. P. Hirsch, and A. W. Hsie,Mut. Res. 45, 91 (1977).

    Google Scholar 

  17. Y. Kojima and J. H. R. Kägi,Trends in Biochem. Sci. 3, 90 (1978).

    Article  CAS  Google Scholar 

  18. M. G. Cherian and R. A. Goyer,Life Sci. 23, 1 (1978).

    Article  PubMed  CAS  Google Scholar 

  19. M. D. Enger, E. W. Campbell, R. L. Ratliff, R. A. Tobey, C. E. Hildebrand, and R. J. Kissane,J. Toxicol. Environ. Health 5, 711 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. M. D. Enger, C. E. Hildebrand, M. Jones, and H. L. Barrington, inDevelopmental Toxicology of Energy-Related Pollutants, Proceedings of the 17th Annual Hanford Biology Symposium, D. D. Hahlum, M. R. Sikov, P. L. Hackett, and F. D. Andrew, eds., National Technical Information Center, Springfield, VA, 1978, pp. 37–56.

    Google Scholar 

  21. M. P. Richards and R. J. Cousins,Bioinorg. Chem. 4, 215 (1975).

    Article  PubMed  CAS  Google Scholar 

  22. P. C. Huang, B. Smith, P. Bohdan, and A. Corrigan,Biol. Trace Element Res. 2, 211 (1980).

    Article  CAS  Google Scholar 

  23. M. Karin and H. R. Herschman,Science 204 176 (1979).

    Article  PubMed  CAS  Google Scholar 

  24. K. R. Etzel, S. G. Shapiro, and R. J. Cousins,Biochem. Biophys. Res. Commun. 89, 1120 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildebrand, C.E., Enger, M.D. & Tobey, R.A. Comparative studies of zinc metabolism in cultured chinese hamster cells with differing metallothionein-induction capacities. Biol Trace Elem Res 2, 235–246 (1980). https://doi.org/10.1007/BF02783822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783822

Index Entries

Navigation